
Draško Drašković

38     LXF232 January 2018 www.linuxformat.com

´

Jonni Bidwell learns about IoT
platforms, embedded programming,
messaging protocols and bootloaders
from veteran coder and Mainflux
founder Draško Draškovic.

The Main
(flux) man

Draško Drašković

January 2018 LXF232     39www.techradar.com/pro

Draško Draškovic is
CEO and cofounder of
Mainflux, an open
source, industrial,
Internet of Things
Cloud platform
written in Go and

Erlang. He holds an MSc in electronics,
telecommunications and industrial control
systems from Belgrade University and is an
expert on semiconductors, communication
protocols and lots of things we can’t even
begin to understand.

Draško’s worked on a number of FOSS
projects, including OpenWRT, U-Boot and
OpenOCD, and has worked for a number of
major hardware providers. This includes Texas
Instruments, where he helped develop the
popular OMAP chips which can be found in
most every 2G and 3G mobile phone. Lately,
he’s been working on IoT and 5G technologies,
and most recently has been dabbling with
Blockchain technology as applied to the
domains of security, data integrity and device
identity. In a joint effort with two of his Mainflux
colleagues, he has just finished a book entitled
Scalable Architecture for the Internet of Things,
which will be available by the end of 2017. We
caught up with him at the O’Reilly Software
Architecture Conference, held in a swanky hotel
in London, to get the lowdown.

Linux Format: How did you get into Linux
and open source in general?
Draško Drašković: I got into open source
relatively early, back in my student days. The
whole computer centre was running Linux
mainframes and we used open source software
for developing student projects. I recognised
the benefits of software freedom and the GNU
philosophy corresponded to my own point of
view. Since then I’ve used almost exclusively
free software for my own projects. I try and use,
promote and ship open source products
wherever possible for industry projects.

Just after finishing my studies and obtaining
my MSc. I started working at the university’s
Innovation Centre, which was part of its
computer centre and sponsored by the
government’s Ministry of Technology. One very
interesting project was for security in a Serbian-
localised distribution. At this point I switched
from being an advanced Linux user to becoming
a bona fide kernel hacker. We got help from
former students who were now professors in
other countries, because we wanted as many
quality contributions as possible so that our
distribution could be as secure as possible.

After this project I joined a French company
in Belgrade. It worked with semiconductors,
which has always been my area of interest. After
a few months we had a big project with Texas
Instruments (TI) in Nice on the French Riviera,
and I started working with them after this. Since
then I’ve moved between Nice and Paris

working for various companies in the
semiconductor and wireless communications
domains. And practically always used Linux.

LXF: What are some of the highlights of your
(considerably impressive) career so far?
DD: Besides my time at TI, I worked at a startup
called Sequans Communications where we
built a chip that was used in the world’s first 4G
phone, the HTC Evo. I
also worked on the
Devialet high-fidelity
audio system (www.
devialet.com/en-eu/
phantom-speaker),
which is basically a
distributed wireless
computer system for
audio. It achieved worldwide popularity and won
lots of prizes. It’s interesting in that it’s just a
Linux machine with a lot of support for wireless
streaming and specialised FPGA circuitry for
audio processing. Besides that, I’ve worked on
OpenWRT, OpenOCD, U-Boot and Mainflux.

LXF: You have a strong background in
engineering and electronics. Is that
necessary for low-level kernel programming?
DD: Yes – knowledge of digital electronics and
computer architecture is essential here. It’s
important to understand HW communication
and control interfaces and protocols – like

GPIO, UART, I2C, SPI, USB and similar, as well
as networking (wired and wireless). Linux lower
layers are very exciting to hack on, but if you
take, for example, just the Linux Wi-Fi
subsystem—it’s a very complex area and
demands a lot of knowledge of how hardware
functions and sometimes even physics around
radio transmissions over the ether. So you
need to understand how the protocol works

at the physical layer, but also the layers above
that are specific to the device.

LXF: Sounds hard. Tell us more about coding
for embedded systems.
DD: Embedded programming poses a lot of
challenges. But it’s extremely exciting. So
peripherals connect to the CPU over the
standard hardware interfaces I mentioned
earlier, and they also have their own controllers
with their own internal registers. These are
embedded in the SoC at a particular address
space. RAM is an important peripheral, and that
has its own controller. To boot Linux you need to

On his life-long loyalty to linux

“I try and use, promote
and ship open source
products wherever possible”

Interview

´

Draško Drašković

40     LXF232 January 2018 www.linuxformat.com

set up, among others, the memory
management unit (MMU) to have virtual/
physical address division. Both RAM flash
storage are often very limited, so that’s a
challenge, too. Early on in the development
process hardware drivers are probably not
working correctly and debugging them is hard,
but OpenOCD helps a lot.

LXF: Intriguing – can you tell us more about
this openOCD.
DD: OpenOCD (open On-Chip Debugger) is a
JTAG debugger. JTAG is practically a standard
hardware protocol built into every System on
Chip (SoC) at the hardware level. It means you
can use hardware signals to stop the core,
progress instruction by instruction, examine the
chip’s state and so on. In order to issue these
commands to the chip you need PC software
that’s able to speak and understand the
protocol, it needs to send commands and
process the chip’s responses.

Traditionally this software, and the hardware
dongles that went with them, were very
expensive. Big companies have enough budget
for them, but for individuals – hobbyists and
enthusiasts – it’s very expensive. The openOCD
project uses extremely cheap USB or UART
dongles to connect to the chip’s sockets, and
then the software can do all the low-level
debugging. At this level there’s not even a serial
console. I did a lot of work here on the MIPS
architecture. ARM was already pretty well
supported on openOCD, but a lot of things were
missing for MIPS.

LXF: Tell us more about the work you do
now. What open source tools do you use?
DD: Most of the stuff that I work with deals
with low-level and embedded programming.
I’ve been working on low-level kernel code
both in open-source and commercial products.

This has mostly involved working in a Platform
team of the company, the team that delivers
bootloader and Linux BSP (Board Support
Package). This is a bootable Linux image
for that architecture including various Linux
device drivers.

Throughout my career I’ve worked mostly in
semiconductor companies, where the product
is a system on chip (SoC), and then you would
start building Linux support from FPGA
prototypes to full-blown ASICs. My focus is on
hardware and electronics, so I build devices,
then write device drivers and so on to give those
devices a brain. So starting from the silicon, I
build up an abstraction layer, the system layer,
and then build applications on top of that. In any
case, you start from bare metal, assembly, and
then you build your system, slowly, piece by
piece until eventually you have the luxury of
booting into a Bash shell.

When you deal with low-level programming,
your using GCC to compile code, often written
in C, sometimes assembler, and GNU Make.
Those are used pretty extensively. When you’re
dealing with constrained devices,
microcontrollers for example, you’re often
programming just a bare metal application. You
don’t even have an operating system, or more
intelligent software. Often here you’ll be cross-
compiling on your desktop machine for a
different target architecture, like ARM or MIPS.
Then somehow transferring it (you probably
don’t have the luxury of networking at this
point) to the chip’s RAM.

In this line of work Yocto-derived Linux
distros (www.yoctoproject.org) and the
Buildroot (https://buildroot.org) framework
are standard tools. When you have a slightly
more powerful machine, say a Raspberry Pi, or
anything that can run Linux, then you need a
bootloader in order to load your Linux image.
U-Boot is a popular choice here.

LXF: You’ve contributed to U-Boot – what
was the nature of those contributions?
DD: Yes, I’ve contributed to U-Boot, mostly for
ARM devices. My contributions have been
dealing with the processor’s instruction cache
and data cache, and initialising and setting the
memory management unit on the chipset.

LXF: I think most of our readers are familiar
with GRUB, and possibly some other
bootloaders on x86 devices. But U-Boot
always seemed more hardcore?
DD: Well U-Boot supports x86. The point is
when you’re starting from scratch, and this is
what U-Boot in general has to do: it starts from
the first instruction at the entry point of the
chip. It’s set up in hardware to jump to this
address when it’s powered up, and it expects to
find instructions there that make sense and
that lead toward configuration of your SoC: the
processor, the peripherals… everything you
need to boot Linux. The most important thing to
configure is the memory, because without this
being correctly set up you won’t be able to load
a Linux image into it.

Next you must configure the flash drive, or
whatever non-volatile storage the device has, so
that the kernel image can be read. So U-Boot’s
goal is to configure the system, fetch an image
from non-volatile storage and load it into RAM.
U-Boot then jumps to this address and from
here Linux takes over. There are a lot of
applications where people are using Intel’s
architecture in an embedded context where you
don’t need a fully featured bootloader like GRUB.
You need to use U-Boot here, in these industrial
contexts, and it does the same on x86 as it does
on ARM, MIPS or any other architecture.

LXF: Okay, so I guess it’s just that with
desktop PCs the BIOS or UEFI does a lot of
the initial configuration for you…
DD: That’s it, so the low-level stuff U-Boot does
is equivalent to what happens in the BIOS.

LXF: Mainflux sounds interesting, but – and
do forgive our ignorance here – what is it?
DD: Mainflux is an open-source, Apache-2.0
licensed IoT platform with the ambition of
building an industrial infrastructure. It’s a
middleware that can be used for building
vertical IoT solutions and bringing smart
connected products to the market faster.

The idea is to build a multi-protocol system
with a modern architecture based on a set of
microservices. It’s built in Go and deployed in
Docker. The Mainflux system can be deployed in
the Cloud or on-premise and is designed to be
highly scalable, to process connections from
lots of sensors. The system has been built with
security in mind, and respects modern
standards such as JSON Web Signature (JWT)
and TLS, as well as fine-grained, policy-based
authorisation. All work is published on Github:
https://github.com/Mainflux.

Draško Drašković

January 2018 LXF232     41www.techradar.com/pro

LXF: So Mainflux originally grew out of
another project connected to OpenWRT
(the open source firmware for routers)?
DD: My work on OpenWRT and community
contributions was done through a fascinating
project called WeIO (www.we-io.net). It’s a
Linux prototyping board that we designed from
scratch in Paris, both HW and SW. The idea was
to democratise Linux prototyping and
development of connected IoT objects through
an intuitive Python-based SDK that could
interface with the underlying HW.

We wanted to design something that was
similar to the Raspberry Pi, but we were doing
this before the Pi existed, around 2010-11. Trying
to find inexpensive Wi-Fi chips was difficult at
this time. There weren’t really Linux boards or
the maker spaces that we have now – all that
existed was Arduino. I knew that Linux could
help here, but back then the maker community
wasn’t so interested in complex devices, they
were more about simple microprocessors.

So the challenge was to somehow wrap that
complexity that goes with Linux and present a
simple API, and an application that exposes
that API, that resembles programming a
microcontroller with Arduino. We successfully
crowdfunded this project (www.indiegogo.
com/projects/weio-platform-for-web-of-
things#) and built the hardware. That worked
very well locally: on the LAN you could connect
to your boards and program them easily.

But we wanted to go a step further and
connect them to the Internet, so that the boards
could be programmed remotely. To do this you

need some sort of remote cloud to which those
devices would connect. Then your application
would also connect to this centralised server,
which would then serve as a bridge, relaying
messages between the application and those
devices. It turns out that this sort of centralised
IoT solution, with all the capabilities we wanted
and the licenses we wanted to see, didn’t exist in
open source form. So we started building it, and
this became Mainflux. This was about two and a
half years ago. In the meantime, other members
of the community had the potential to build
something beyond the enthusiast and maker
mindset, and build something targeting the
industry. The goal is to be the go-to open source
IoT cloud platform.

LXF: Mainflux just joined the Linux
Foundation’s EdgeX Foundry group. We’ve
been hearing lots about Edge computing
lately. Can you explain to us a little about it?
DD: The whole ecosystem of IoT and
connected devices is rich and there are a lot of
strategies for how to interconnect those
devices. This isn’t something new: machine-to-
machine communication has been around for
decades, but new protocols have been invented
for these workloads in the past couple of years.
Different use cases call for different strategies,
so when you go to the industrial context – in the
factory for example – there are latencies that
must be respected and the responses from the
network must be extremely fast.

This is the case in the factory, and it’s also
the case for autonomous vehicles. If such a

vehicle doesn’t receive an answer from
processing some sensor readings, then it might
not stop at a red light, it might crash or worse.
So those latencies are extremely important.

The second thing that is important is that
we’re expecting a huge number of devices to be
connected soon. Some are predicting 50 billion
devices by 2020, some not quite so high, but a
huge number nevertheless. So the cloud won’t
be able to accept all the data sent by these
devices and we need some kind of filtering,
processing and aggregation on the Edge. And
for economical purposes it makes sense to
send only the necessary data. This is what’s
known as Edge Computing, or Fog Computing if
you like – the Cloud comes down to the ground.

The Edge ecosystem hadn’t really been
standardised. There were a lot of
implementations – practically every company
that made an IoT gateway was doing it their
own way with their own software. These
machines mostly run on Linux, but the software
doing the connecting, security and the filtering
and processing layers I just mentioned, this was
all done with no standards in place.

At the beginning of this year, Mainflux was
presenting at the Open Networking Summit in
Santa Clara in Silicon Valley. We spoke to the
Linux Foundation, in particular Dell, about
joining what would soon become the EdgeX
Foundry. This involved big players like AMD,
Canonical, VMware and many more. I think
there are more than 60 in the consortium now.
Mainflux joined as an open source project, as an
affiliate member that was there from the start.

Mainflux’s endpoint

“The goal is to be
the go-to open source
IoT cloud platform”

Draško Drašković

42     LXF232 January 2018 www.linuxformat.com

What was recognised was that a set of
technologies used to implement Mainflux,
which is mostly written in the Go programming
language, was very interesting. At least the
architectural patterns; Mainflux is written as a
set of microservices that you can easily port to
the gateway. This kind of architecture is very
scalable, and is suitable for Cloud and on the
IoT gateway itself. So we contributed our code
to the EdgeX Foundry project. Now we want to
see it moving towards a complete Go
implementation and set up an industrial
standard for how IoT Edge devices should
communicate in this ecosystem, and enable the
industry to produce quality gateways and
ultimately solve this mess on the Edge.

Our main goal is building modern-edge
systems and IoT gateways based on innovative
EdgeX technology that would be connected and
managed by the Mainflux cloud. This way we
will have an end-to-end vertical solution for
industrial IoT, based on completely open-source
components, published under the Apache-2.0
license. Mainflux and EdgeX go really well
together: Mainflux as the IoT cloud and EdgeX
as an IoT gateway on the network edge.

LXF: We’re particularly concerned about
IoT security, mostly in the sense of
manufacturers deciding to produce cheap
consumer devices and then not issuing
security updates…
DD: Security is extremely important because
as soon as certain kinds of physical objects are
connected to the Internet they have the
potential to cause injury or even death. That’s
one side of it, but last year we also saw a huge
hack of Internet-connected cameras that were
used in a DDoS attack. The cameras
acted as malicious clients, attacking
major websites, and practically bringing
down half of the Internet (see
www.forbes.com/sites/
briansolomon/2016 /10 /21/
hacked-cameras-cyber-attack-
hacking-ddos-dyn-twitter-netflix).
Why is this possible? Because there are
so many of them, we’ve never had this many
connected clients before. Once someone
hijacks these they have a considerable army of
machines at their disposal.

Security is certainly one of the biggest
challenges and must be addressed on many
levels – both on firmware running on chips and
in the cloud. Hardware must be secured via
secure-boot and hardware fuses, and all
firmware must be encrypted. Also, anti-
tampering hardware mechanisms must be
implemented. All communication must be
encrypted and certificates must be in place.

In the cloud there must be proper
authentication and authorisation services and
secret keys must be kept in secured vaults.
Secure, remote update over-the-air must be
implemented, and this can be very challenging

with embedded Linux devices. We’re trying to
do all of these things right with EdgeX Foundry
and Mainflux systems.

LXF: How does Linux fit into the general
IoT scheme? Some of our readers would like
the idea of just apt updating their fridge for
piece of mind, but that’s probably not the
future. For small devices that just need to
send sensor readings down a wire it seems
crazy to be running a full Linux kernel, even
one that’s thoroughly pared back.
DD: Right. For constrained devices a realtime
OS such as Contiki (www.contiki-os.org), RIOT
(www.riot-os.org), or the Linux Foundation’s
new Zephyr Project (www.zephyrproject.org)
would be a better fit. More powerful devices will

probably run embedded Linux using hand-
crafted distros via the tools mentioned earlier.

LXF: How can Mainflux help here, what
challenges remain and where do you think
viable solutions lie?
DD: One of the main problems with IoT is the
lack of standardisation, in the sense of
intercommunication and interoperability. There
are a lot of inadequate protocols in use right
now: On the one hand we see people trying to
use heavyweight protocols, like Websockets or
HTTP, in small microcontrollers. These are
protocols designed for a web browser running
on a [relatively] powerful computer. On the other
hand people are trying to revive old protocols
like MQTT and use them in a modern context.
We’re also seeing new protocols like CoAP

(Constrained Application Protocol).
Because of this diversity we try and build

communication protocols interoperability into
Mainflux. We had to build several servers that
act as microservices and then build a bridge
between them so that we can natively bridge
those protocols. So when a machine speaks
MQTT, for example, then an application
connected over, say, Websocket, can understand
it. Having this kind of interoperability, at least on
the protocol level, will help connect a diverse set
of objects. On the security level, what we’re
doing now is something that resembles what
Microsoft is doing with Azure IoT and what AT&T
is doing with its platform.

But we feel there’s still room for
improvement, particularly through the use of

public key cryptography and
symmetric keys, which exists in, for
example, the mobile telephony
sphere. This kind of infrastructure
would bring more security, but
they’re way more complicated to
implement. So with this complexity
comes a corresponding increase in
price in building the product and

maintaining the public key infrastructure, which
is currently hard. We feel there’s a need for
innovative solutions in this sphere, how we
handle public key infrastructure in general in the
industry, not specifically relating to IoT.

At Mainflux we have a feeling that this will be
enabled through blockchain technology.
Blockchains are suitable for being immutable
databases for storing certificates, or hashes of
your certificates. Through the blockchain you
can be sure of the device’s identity, which you
can then use to authenticate and authorise the
device’s access to some resources. So through
the blockchain a device can bring its identity
with it and connect to different service
providers. This is one possible direction and we
feel there’ll be innovations in this sphere, but
that’s something for the future! LXF

on the challenge of security

“In the cloud there must
be proper authentication
and authorisation service”

