
30     LXF222 April 2017

Journey, you must, into the
often feared land of the shell with
Mayank Sharma and discover the
firepower of a fully armed and
operational command line!

D
espite the leaps and bounds
that Linux desktops
environments have made over
the years, there are still

moments when accomplishing a task
requires you to fire up a terminal. Since
none of the other mainstream
operating systems rely on the
Command Line Interface (CLI)
in the same way as Linux, it’s
often quite intimidating for
new users. Fear of the CLI is
simply not acceptable to
anyone at LXF towers.

The command line is a powerful portal to 
some amazing tools that makes it possible 
to accomplish tasks much more quickly 
than you could with graphical tools. 
Whether you want to install software, 

configure your network or tweak other 
system settings, you can do it from the 
terminal. In fact, the graphical front-end 
applications use these command-line 
tools to get things done. Still, as you might 
have noticed, we often ask you to switch 

to the command line to complete a task. 
That’s because that while the graphical 
tools have made the CLI optional, most 
only expose a small subset of the features 
offered by their command-line equivalents. 
Since there’s no escaping the Linux CLI, 

it’s a good idea to embrace this mature 
and powerful interface and get familiar 
with its ways. 

We’ve compiled a set of commands 
that you should be familiar with to work 
more efficiently with your Linux install. 

There’s obviously a learning 
curve to using the terminal to 
compose your own 
commands and over the next 
few pages we’ll handhold you 
through the CLI and help you 
realise the true potential of 

this interface. Once you get comfortable, 
you’ll notice its speed and efficiency for 
common admin tasks. The skills you learn 
over the next few pages will also elevate 
your Linux competence and help you join 
the ranks of experienced campaigners.

“while the graphical tools have
made the CLI optional, most
only expose a small subset.”

Easing into a CLI

April 2017 LXF222     31

A
terminal emulator is one of the core applications
that’s bundled with every Linux desktop environment.
Gnome has the gnome-terminal while KDE uses

konsole though they are usually simply labelled as ‘Terminal’
in the application menu, When you fire up a terminal you get a
prompt like bodhi@epoch: ~ $. While it may vary in
appearance somewhat depending on the distribution (distro),
it’s usually made up of your username@machinename,
followed by the current working directory and a dollar sign.
Note that the last character changes from $ to # when the
terminal session has superuser privileges.

Let’s begin our terminal travels by learning to navigate the
Linux file system. Files under Linux are organised in a
hierarchical directory structure that you can think of as an
inverted tree-like pattern. The top most directory is called the
root directory which contains files and subdirectories that
further contain more files and subdirectories and so on. In the
shell you are always inside a directory. To display the current
working directory, we use the pwd (print working directory)
command, such as:
bodhi@epoch: ~ $ pwd
/home/bodhi

By default the terminal session sets the current working
directory to your home directory. As you are probably aware,
every user who has an account on your distribution gets their
own home directory. You can list the contents of a directory
with the ls command which can also be used to display
various attributes about the files and folders, such as:
bodhi@epoch: ~ $ ls -l
total 196
-rw-rw-r-- 1 bodhi bodhi 5701 Feb 4 18:20 example-text-file.
txt
-rw-rw-r-- 1 bodhi bodhi 16405 Dec 13 08:45 chart.ods
-rw-rw-r-- 1 bodhi bodhi 23339 Dec 13 08:47 an-ebook.pdf
drwxr-xr-x 3 bodhi bodhi 4096 Feb 4 12:32 Desktop
drwxr-xr-x 10 bodhi bodhi 20480 Feb 6 15:17 Documents
….

We’ll equip you with the skills to make sense of this output
over the next few pages. The Linux shell also keeps a log of all
the commands you’ve executed on the shell. You can press
the Up arrow key to bring up the previous command. This list
of commands is kept in a hidden file named .bash_history
under your home directory. To navigate the filesystem you

can use the cd command to change the current working
directory. By entering cd without any attributes, this will
return you to your home directory. To change to another
directory you’ll have to append its pathname as an attribute.
A pathname can be understood as the route taken along the
filesystem tree to get to a desired directory.

Move around
There are two distinct mechanisms for specifying pathnames:
absolute pathnames and relative pathnames. An absolute
pathname begins with the root directory and follows the tree
one from branch to branch until it reaches the desired
location. For example, the pathname to get to the directory
that apps and various utilities use to house their logs is /var/
log. The leading / represents the root directory under which
there is a directory named var that further contains the log
directory. Type cd /var/log to move into that directory. Notice
the change in the shell prompt that now displays the
pathname of the current working directory.

In contrast to absolute pathnames, a relative pathname
traces its steps to the destination directory with respect to
the current working directory. To this end it uses a couple of
special notations, a single dot (.) and two dots (..). The single
dot notation represents the current directory while the double
dot represents its parent, e.g. if you wish to move to the /var
directory from the /var/log directory, you can type cd ..
instead of the absolute pathname which is cd /var .

The CLI flows through Linux
The Linux command line offers various options
to help you be more productive and find your
way around the unfamiliar environment.

For instance, many commands and utilities
support a --help option that displays
information about its supported options.
For example, the rm --help command will print
the various options supported by the rm
command along with their description and brief
usage instructions.

Similarly, most command-line utilities also
bundle a formal piece of documentation known
as the manual page and usually referred to as
its man page.

The command man mkdir will bring up the
man page for the mkdir utility. There are also a
couple of helpful utilities that can extract brief
information from a man page. For example, the
 whatis command displays a very brief
description of a command from its manual page

that’s usually enough to gauge the purpose of
an unfamiliar utility. Then there’s apropos that
looks for a string inside a man page’s name and
description sections. It comes in handy when
you can’t remember the right command for a
particular task. For example, apropos "split a
zip file" will point you to the zipsplit utility that
helps you split a ZIP file into smaller ZIP files.
You can then read through its man page to get
familiar with its syntax and usage.

How to break terminal velocity and not your leg.

 You can add options to most commands. Some consist of single characters
preceded by a dash, (e.g. -l), but many are longer (e.g. --human-readable).

Top Tip:
Shift+PgUp/

PgDown: Use these
key combinations to
scroll the command-

line interface.

Top Tip:
Ctrl+R: Use

this key combo and
type any keyword to
search for matching

commands in
the history.

32     LXF222 April 2017

Users and permissions

T
ypically most desktop Linux distros only create a
single user during installation. But Linux is a
multiuser system that can be used by multiple

users at the same time (as we’ll learn later in the feature).
There are a number of command-line tools that help you
create and maintain users and groups, such as:
$ useradd mayank
$ passwd mayank

The first command creates a new user account called
mayank that’s locked until you assign a password to it with
the second command. When a new user account is created,
Linux will also create a home directory for the account with
the username, such as /home/mayank. The user account
will have a bunch of hidden files that’ll provide the
environment variables for the user’s session. The command
also creates a group with the same name as the new user.

Once you’ve added an account, you can edit it with the
 usermod command. So for example, the command
 usermod --append --groups sudo,vboxusers mayank

adds the user mayank to the comma separated list of
groups. If you issue this command without the --append
option, the user will be added to the specified groups but
removed from any other groups it already belongs to. A useful
security option is to set an expiry date for an account.

The power of permissions
Each file in Linux has a set of user and group
permissions, and you can use ls -l to see a
file’s full set of permissions and attributes. The
output begins with the permission flags like

this drwxr-xr-x that has four components:
$ ls -l
-rwxrw-r-- 1 bodhi bodhi 23339 Dec 13 08:47

some-document.pdf
drwxr-xr-x 3 bodhi bodhi 4096 Feb 4 12:32

Desktop

The first character indicates whether the
corresponding item is a directory or a file with a
directory marked with a d character and a
regular file marked with a hyphen (-). The next
nine characters are broken up into sets of three
characters each, which indicate permissions for
the user, group and everyone else respectively.
The r denotes read permission, w is for write
permissions and x points to execute
permissions. The first entry in the example

reads rwxrw-r-- , which means the user has
read, write and execute permissions, while
other members of the group have read and
write permissions and everyone else can only
read the file.

Sometimes the permissions are represented
with a numerical notation. Read permissions
weigh in at 4, write is 2 and execute is 1. So the
permission rwxr-x--x can be presented as
(4+2+1)(4+0+1)(0+0+1) or 751.

Crowd control from the blank void of the dark terminal.

 The commands whoami, who, w and last help you track user activity.

The command usermod --expiredate 2017-05-21 mayank will
disable logins into the account post 21 May 2017. In the same
vein, you can also delete a user account with the userdel
command. For example, userdel --remove mayank will delete
the mayank user along with its home directory and all the
files residing within.

Change identities
As you get familiar with the command line utilities your distro
has to offer you’ll often run into some that require superuser
privileges. This is especially true of most commands that help
carry out some administrative task. The two main commands
that help you take on escalated identities are su and sudo .
Some distros include one of the two commands while others
include both.

The su command enables you to assume the identity of
another user and gives you the option to either initiate a new
shell session or only issue a single command as that user.
The command su mayank will prompt you for the password
for the mayank user and after successful authentication
change the working environment from the existing user to
that of the mayank user. If you don’t specify a username with
the su command, it’ll assume you wish to log in as the
superuser and prompt you for the password of the root user.
Any command you enter now will run with the privileges of
the root user. Type exit when you wish to terminate the
session and return to your own shell.

It is also possible to execute a single command rather
than starting a new interactive shell with the -c switch.
For example, su -c "ls -l /root/" will first prompt you for the
password of the root user and then run the command
between the quotes with superuser privileges.

The sudo command, on the other hand, allows an
administrator to set up a configuration file called /etc/
sudoers, and define specific commands that particular users
are permitted to execute with superuser privileges. Another
important difference is that the use of sudo doesn’t require
access to the password of the root user and you instead
authenticate using your own password. These differences
make sudo the preferred mechanism of the two. So you can
list the contents of the root directory with sudo ls -l /root/
after authenticating with the password for your account.

Top Tip:
split: chop a file
into pieces, e.g.
split <FILE>

--bytes=1000 splits
<FILE> into 1,000

byte files.

April 2017 LXF222     33

Users and permissions Files and directories

Hard and symbolic links
Links enable you to create an association 
between two files or directories. This is useful 
for maintaining multiple versions of a file or 
directory without the overhead of additional 
disk space for storing multiple copies. Links 
can either be hard or symbolic and we can use  
 ln  to create a link between two files.

By default, the  ln  command will create a 
hard link between these files. Hard links create 
an identical copy of the linked file on disk that 
gets updated automatically as the source file 
gets updated. While the content of the two files 
are linked, if the source file gets deleted, the 
target file will continue to exist as an 

independent file. An important thing to note 
about hard links is that they only work on the 
current file system. You can’t create a hard link 
to a file on a different file system. Also, hard 
links don’t work for directories. You can 
however overcome these issues by using the  -s
switch to create a symbolic link. 

Get a choking force grip on file management from the text-only CLI.

 The less command is a program to view text files, where you use the arrow
keys to scroll through a text file.

A
nother CLI skill that will help you manage your
distro more effectively is the ability to manipulate
the filesystem from the terminal. Before we get to

the commands, first know that under Linux, everything
(including programs, directories and devices) is a file and
every file must be owned by a user. Users can only access
what they own or have been given permission to run.
Permission is granted because the user either belongs to
the file’s group or because the file is accessible to all
users. The one exception to this rule is the root user who is
allowed to access all files and programs in the system.

Many times you’ll need to change the permissions of a file
to make it accessible or inaccessible. The chmod command
helps you change the permissions or mode of a file. Be aware
that only the file’s owner, or the superuser, can change the
mode of a file. The command chmod supports two distinct
ways of specifying mode changes: numerical number
representation or symbolic representation. Symbolic notation
offers the advantage of allowing you to set a single attribute
without disturbing any of the others and is divided into three
parts. The first part denotes whom the change will affect and
is marked with a combination of the characters u, g, o, and a:

 u is for user and refers to the owner of the file or directory,
 g is for group owner.
 o is short for others.
 a is short for all or a combination of all the characters and is

the default value if no character is specified:
The second part of a symbolic notation marks which

operation will be performed:
 Plus (‘+’) Indicates that a permission is to be added.
 Minus (‘-’) Indicates that a permission is to be taken away.
 Equals (=) Indicates that only the specified permissions

are to be applied and that all others are to be removed.
The third part denotes what permission will be set and is
specified with the earlier mentioned r, w, and x characters.

Putting this into practice a u+x adds execute permission
for the owner, while u-x removes execute permission from the
owner. Similarly, go=rw sets the group owner and anyone
besides the owner to have read and write permission. Any
previous execute permissions given to users besides the
owner are removed.

While it’s easy to perform simple file manipulations with a
graphical file manager, complicated tasks can be easier with
the command line programs. For example, it’ll be a time-

consuming process to copy all PDFs from one folder to
another except for the ones that already exist in the
destination folder. In the terminal however cp -u *.pdf
destination-folder will do this without any fuss.

Manipulate files
The Linux shell provides special characters called wildcards
that help specify a bunch of filenames. Two of the most
commonly used wildcards are * that matches any
characters and ? for matching a single character, e.g. d*.pdf
matches all files that begins with the character d and ends
with .pdf while d???.pdf limits itself to PDF files that begin
with the character d but are followed by exactly three more
characters, such as d001.pdf and d002.pdf.

Equipped with this knowledge we can now comprehend
the cp command. The -u option only copies files that either
don’t exist, or are newer than the existing corresponding files,
in the destination directory. You can also use the -r option to
recursively copy directories and their contents, such as cp -r
Documents/ /shared/All_files/ .

Similar to cp is the mv command that’s used to move
files from the source to the destination. If the destination file
exists, it’s overwritten by the source file. Then there is the rm
command that’s used to delete files and directories following
the command, such as rm file1.txt and rm -r documents .
However, be careful when using rm since it zaps the files
straightaway instead of moving them to a recycle bin.

Top Tip:
Ctrl+Shift+C/V:
Use these key

combinations to copy
and paste text

from inside the
terminal.

Top Tip:
Append & to a

command to run it in
the background, such
as [command] &. Use
the job ID with the fg

command.

34     LXF222 April 2017

Handling filesystems

T
he filesystem layout of a Linux system is as per the
Filesystem Hierarchy Standard. The table (see
bottom right) lists some of the important

directories though there may be slight differences
depending on your distro. Unlike Windows, Linux maintains
a single filesystem tree and even external devices attach
to it at various points.

The first step in managing a storage device is attaching it
to the filesystem tree. This process is called mounting. A file
named /etc/fstab lists the devices that will be mounted at
boot. Read through fstab’s man page (man fstab) for an
explanation of each of the fields in the file.

The mount command is used to mount file systems.
Entering the command without arguments will display a list of
the filesystem’s currently mounted. There are two main
components to mounting a device. The first is the actual
name of the device file associated with the physical device.
The Linux kernel treats all disk-like devices, such as SATA
hard disks and USB drives as SCSI disks with names such as
/dev/sdaX. The X is replaced with a number that represents
the partition number. However, many distros associate a
device with a text label that can be either a simple text or a
randomly generated UUID (Universally Unique Identifier). The
second component is the mount point, which is the directory
where the device is attached to the filesystem tree.

Virtually all distros will automatically mount a removable
disk and you can find its mount point with the mount
command. However, when you’re done writing to a USB disk,
make sure you first unmount it before yanking it from the
USB port, e.g. umount /dev/sda1 unmounts the device
associated with /dev/sda1. The unmounting process makes
sure all data destined for the device has been transferred.

Data as we encounter it every day is in the form of files
organised into structures that we can comprehend. However,
in reality data exists in the form of blocks and there are times
when you’ll need to move it around in its raw form. For this
purpose the Linux shell includes the dd utility (short for data

Keep files in order
The shell has various mechanisms to effectively
create compressed archives and backup files.
Archiving is the process of gathering up many
files and bundling them together into a single
large file. The tar program is the classic tool for
archiving files, e.g. the command tar cvf
documents.tar Documents/ would archive the
whole Documents directory inside a single file
called documents.tar. Conversely, tar xvf /
path/to/documents.tar will extract the contents
of the archive under the current directory.

Once you’ve created an archive, you can also
compress it before backing it up. The gzip
program is used to compress one or more files.
When executed, it replaces the original file with

a compressed version of the original. The
corresponding gunzip program is used to
restore compressed files to their original,
uncompressed form. The bzip2 program is
similar to gzip, but uses a different compression
algorithm that achieves higher levels of
compression at the cost of compression speed.
A file compressed with bzip2 has the extension
.bz2, e.g. the command bzip2 documents.tar
would replace the documents.tar file with the
documents.tar.bz2 file.

Once you’ve rolled your files into an archive,
you can use rsync to back them up to a different
location. Rsync does more than make copies of
your files. You can use it to sync files on two

directories on the same PC, on two different
computers on the same network or on
machines thousands of miles apart over the
internet, e.g. This command will sync a single file
(backup.tar) on a local machine from one
location to another location (/tmp/backups/):
$ rsync -vh backup.tar /tmp/backups/

The v option increases verbosity and h
prints numbers in a human-readable format.
You can as easily sync the file to a remote PC:
$ rsync -zvh --progress backup.tar

pi@192.168.3.101:/home/pi/backups/
The z option compresses the files before

ferrying them and saves you bandwidth and
time and --progress helps you track the transfer.

This may seem like plug and pray but it’s not too complicated.

duplicator) that helps copy blocks of data from one place to
another. While dd can be used for a variety of purposes, you’ll
mostly encounter this command when dealing with ISO
images. Virtually all distros put out new releases in the form of
ISO images that you can either burn onto an optical media or
transfer to USB disk with the use of dd, such as:
$ sudo umount /dev/sdd
$ sudo dd if=/path/to/fedora.iso of=/dev/sdd bs=4M
$ sync

In these set of commands, we’ve first unmounted the USB
drive connected to /dev/sdd before asking dd to copy the
ISO file to the USB disk in chunks of four megabytes. The
operation will take some time to complete but before yanking
the disk issue the sync command to make sure all data has
been transferred to the disk.

You can also use the mount command to mount an ISO
image while it’s still on the hard disk:
$ sudo mkdir /mnt/iso_image
$ sudo mount -t iso9660 -o loop image.iso /mnt/iso_image

Here we’ve first created a mount point named /mnt/iso_
image and mounted the image file at that mount point which
is now a loop device. A loop device is a pseudo-device that
makes a file accessible as a block device. After the image is
mounted, it can be treated just as though it were a real
CD-ROM or DVD. Remember to unmount the image when it’s
no longer needed.

Remote operations
Linux is well-known for its networking dexterity. Its popular
graphical tools and applications derive their power from
feature-rich command line utilities that you can use directly
for more control over network operations. Two of the most
popular commands used for debugging network-related
issues are ping and traceroute . For instance, the command
 ping linuxformat.com will send a packet called an ICMP
ECHO_REQUEST to the specified host. Most web servers are
configured to reply to this packet, which enables you to verify

Top Tip:
mkdir: creates

directories, mkdir
all_documents/

all_images/ creates
two directories.

Top Tip:
netstat displays
loads of network

stats: netstat -ap |
grep [name] to see

an app’s ports.

April 2017 LXF222     35

Important directories inside your distro

 The command python -m SimpleHTTPServer uses Python’s built-in HTTP
server to show the current directory in a web browser on localhost:8000.

the connection. The command prints performance statistics
after it is interrupted by pressing Ctrl+C. A properly
functioning network will have no packet loss. You can also use
the traceroute program which displays a listing of all the hops
the network traffic takes to get from your local system to a
specified host, e.g. type traceroute techradar.com to see the
route taken by packets flowing from your computer to
techradar.com’s web server.

The Linux CLI offers several options for sending files over
the network. A popular command-line program for file
downloading is wget. It is useful for downloading content from
both web and FTP sites. The utility can download everything
from single files and multiple files to even entire sites. You’ll
most often use it to fetch ISO images:
$ wget -c http://releases.ubuntu.com/16.04.1/ubuntu-16.04.1-
desktop-amd64.iso

The -c option asks wget to grab a partially-downloaded
file and is useful for resuming interrupted downloads.

It’s often useful to verify the integrity of an ISO image that
you have downloaded. In most cases, a distributor of an
image will also supply a checksum file which contains a string
of alphanumeric characters that have been calculated from
image. If the contents of the image file changes by even one
bit, the resulting checksum will be very different. Checksums
are most commonly generated by the md5sum program.
After downloading an image, you should run md5sum against
the image and compare the results with the md5sum value
supplied by the publisher:
$ md5sum downloaded-image.iso
85f43dc4c4ceb007661a3044845g243c downloaded-image.
iso

Secure transfers
The first generation of tools that were designed to access
remote computers conducted their business in cleartext.
Later, a protocol called SSH was written to securely
communicate with the remote machine. Virtually all Linux
distros ship with an implementation of SSH which is called
OpenSSH. You can use this to run a secure terminal session
over the network. All traffic passing over the session is
encrypted Including passwords. A SSH setup includes an
SSH server that runs on the remote host and listens for
incoming connections on port 22 and an SSH client that’s
used on the local system to communicate with the remote
server. You’ll find various tutorials about SSH in previous
issues of Linux Format issues.

The most common use for SSH these days is to remotely
access a Raspberry Pi. Assuming the IP address of the Pi is
192.168.3.101, you can access it via SSH with:
$ sudo ssh pi@192.168.3.101

This SSH client will connect to the SSH server running on
the Raspberry Pi and prompt you for the password of the pi
user. The first time a connection is attempted, you’ll have to
accept the credentials of the remote host. Once
authenticated, you’ll get the shell prompt of the remote
Raspberry Pi host. Any commands you enter now will be
executed on the Raspberry Pi. When you’re done, type exit
to terminate the remote session and return to your local shell.

The OpenSSH package also includes scp (secure copy)
that makes use of an SSH encrypted tunnel to copy files
across the network. Unlike the tradition cp command, when
using the scp command you’ll have to ensure that the

source or destination pathnames also include the name of a
remote host. For example, to copy a file named document.txt
from our home directory to the remote Pi, we could do this:
$ scp ~/document.txt pi@192.168.3.101:/home/pi/
Documents/

To copy files from a remote system down to a local
machine, the order of the scp command just needs to be
reversed so that the first, or source, argument is the remote
system and the second, or destination, argument is a
directory on the local system. To illustrate, the following we’ll
copy an ISO image in the Downloads directory on the remote
Pi into the current directory on the local machine:
$ scp pi@192.168.3.101:/home/pi/Downloads/distro.iso .

Directory Purpose

/ The root directory of everything.

/boot Contains the Linux kernel and the boot loader.

/bin
Contains essential programs that must be present for the
system to boot and run.

/dev
This is where the kernel maintains a list of all the devices that
it understands.

/etc Houses all of the system-wide configuration files.

/home
Each user is given a directory under /home which is the only
place they can write files without escalated permissions.

/lib
Contains shared library files used by the core system programs.
Your installation will also have /lib32 and /lib64 that contain
architecture-specific shared libraries.

/media
Contains the mount points for removable media, such as
USB drives and DVDs, and other partitions that are mounted
automatically at insertion.

/opt This is used to install some software, such as VirtualBox.

/proc
This is a virtual file system maintained by the Linux kernel that
doesn’t contain real files but rather system information.

/tmp
This directory is intended for storage of temporary files created
by various programs, clear every restart.

/usr

The largest directory that contains all the programs and support
files Also houses other important directories such as /usr/bin
that holds executable programs and commands installed by
Linux. There’s also /usr/share that contains all the shared data
used by programs in /usr/bin.

Top Tip:
file: use the file

command to
determine a file’s

type. It prints
details of the file’s

contents.

36     LXF222 April 2017

Secure your system

L
inux is known for its security prowess, although we
admit it hasn’t been that good in the last few years
with the numerous exploits and breaches. Earlier in

the feature we mentioned the /etc/passwd file that
records details about the users in the installation. The file
uses the following format:
[username]:[x]:[UID]:[GID]:[Comment]:[Home
directory]:[Default shell]

Some fields such as [username] and [Home directory]
are self explanatory. The x in the second field points to the
fact that the account is protected by a shadow password.
The [UID] and [GID] are the numerical representation of the
user and primary group that a user belongs to. The [Default
shell] is the shell that will be made available to this user when
they login into the system. Most Linux distros will default to
the Bash shell but there are several others on offer. Then
there’s the /etc/shadow file which contains the encrypted
password as well as other information, such as account or
password expiration values.

The permissions on the /etc/shadow are set to prevent
any user from even reading the file. But if no one can access
the file how can users change their passwords which are
stored in this file? This is because the passwd utility uses a
special permission known as SUID (Set User ID).

Thanks to this special provision, the user running the
 passwd command temporarily becomes root while the
command is running and can proceed to write to the /etc/

Control your services
Many popular distros have traditionally used
SysVinit for starting and controlling services.
But this has now been replaced, in a somewhat
controversial fashion for some users, by a new
system and services manager called Systemd.
The Systemd service manager uses the

 systemctl command to control the services. If
you enter the systemctl command into a
terminal window it will to list the status of
everything that is controlled by Systemd.

If you follow this up with systemctl list-units -t
service command, which will list the active
services. You can check the status of any
individual service with the systemctl status
command, such as systemctl status sshd.
service . Similarly, you can change the state of

the service by replacing status with start ,
 restart and stop . For example, sudo systemctl
start sshd.service will start the service, if it isn’t
already running.

If you want a service to start at boot, you will
need to use the enable option, such as
 sudo systemctl enable sshd.service

Similarly, the command
 sudo systemctl disable sshd.service

disables it from starting at boot. You can also
use systemctl to power cycle the computer.
The command for this is systemctl poweroff
which will power down the system and
 systemctl reboot will restart it.

Don’t trust your feelings, how do know that you are yourself?

 The pstree
command
shows all the
processes that
are currently
running along
with their
associated
child processes
in a tree-
like format.

shadow file. To append the setuid bit to a file, add +s for the
user, for example chmod u+s /path/to/file . Now anyone who
attempts to access this file will do so as if they are the owner
of the file.

Sudo primer
To grant access to sudo , a system administrator must edit
the /etc/sudoers file. It’s recommended that this file is
edited using the visudo command instead of opening it
directly with a text editor. Entering sudo visudo opens the
/etc/sudoers file using vi text editor. The Defaults secure_
path= line specifies the path use for every command run
from sudo . It’s followed by lines that specify permissions for
root, any other user and certain groups (marked by the %
sign) on the installation. The rule for the root user reads
something like this:
root ALL=(ALL) ALL

This means that the root user can run any command on
any host as any user. To allow user mayank to add and
remove users on all machines, we can add this line:
mayank ALL=/usr/bin/useradd, /usr/bin/userdel

The file has an extensive man page (man sudoers) that
has more examples and features.

Superintend processes
The average home user doesn’t need to have the proficiency
and the dexterity of a professionally qualified system
administrator. However, there are a few skills that should be in
your repertoire to manage your computer efficiently.

One important aspect of a system administrator’s job is to
make sure that the computer you are looking after runs
smoothly and you can do so by monitoring it. The ps -e
command will print a long list of all the processes on the
system. You can truncate the list to display only processes
that have the same UID as the current user by invoking the
 ps command without any switches. The output of the ps
command includes the unique process ID (PID) along with
the name of the running program.

It’s more common to pipe (see Pied Piper box, bottom
right) the list to display information about a specific program.
The command ps aux | grep libreoffice will display detailed

Top Tip:
fsck: Checks the
integrity of a file

system before it is
mounted, such as

sudo fsck
/dev/sdb1.

Top Tip:
find: Helps search

for files, for example,
find . -iname ‘doc*
looks for files whose

name begins with
‘doc’.

April 2017 LXF222     37

Combine the force with pipes

Greater force powers

One of the best things about the CLI is that it
lets you combine small individual commands
into a complex and useful task without much
effort. This is accomplished with the pipe (|)
operator. It is used to sending the output of one
command as the input for another. For example,
 ls -a | grep _ uses the ls and grep commands
to list all files that contain the underscore

character. In the example, we’ve used the |
operator to sort through the verbose output of
the ps command to find the processes that are
associated with a particular application, such
as LibreOffice.

You can do some amazing things with the |
operator. We mentioned earlier that Bash
maintains a history of commands. You can print

the entire log with the history command or
scroll through the list by piping the output to the
less command such as history | less . You can
also use | to chain together a number of
commands. For example, use sed with the
earlier command that lists all files with the
underscore (_) to change it to a hyphen (-)
with ls -a | grep _ | sed "s/_/-/g" .

Sage advice for your journey to master-level command-line Jedi:
1  screen If you SSH into remote machine regularly, you’ll find screen to be

a wonderful companion. Using the utility you can run a process without
maintaining an active shell session. To run a time consuming process inside
a remote machine, first connect to it with SSH. Then type screen to start
the screen session. You can now initiate the time-consuming process like an
update or a download. When it’s underway, press Ctrl+A and D to detach
from the screen session but leave the process running. You can then
terminate the SSH process. Later on when you reconnect to the SSH
session, you can check on the status of the update or download by restoring
the screen session with screen -r . Use screen -ls if you have multiple
screen sessions and then reconnect to the one you want by specifying its
session ID, such as screen -r 6754 .
2  renice If you have a process that’s hogging the resources on your

computer, you can use the renice command to assign it a lower priority.
Linux assigns a priority to each process and the ones with higher priority are
first given access to the system’s resources while others with lower priority
have to wait for their turn. The renice command can assign a priority value
between -20 and 19. The lower the number the higher the priority. If you
want to take away resources from LibreOffice (PID: 8899) for example, you
can assign it a lower priority number with renice 15 8899 .
3  xkill Helps you terminate graphical process. You can either type the

command in the terminal or the run dialog box which changes the pointer
into a cross-hair cursor. Now click on any non-responsive window to kill it.
Right-click to dismiss xkill without killing a process.
4  dmidecode You can use the dmidecode command to know more

details about your computer’s hardware. For example, use dmidecode -t 16
to list details about the physical memory. Try browsing the dmidecode man
page for a comprehensive list of supported options. Once you get
comfortable working with SSH, use sshfs to mount remote partitions. For
example, sshfs user@remotehost:/home/bodhi /media/remotefs mounts
the remote home directory under the local filesystem.

 Since crontabs use an odd format, you can use the online
utility at www.corntab.com to easily setup crontabs.

information only about the processes associated with
LibreOffice, for instance. Once you know the PID of a process
you can terminate that process with the kill command.
Assuming that LibreOffice has a pid of 8899, you can
terminate an unresponsive session with the sudo kill 8899
command. It’s also possible to send signals to multiple
processes matching a specified program or username by
using the killall command, such as killall vlc .

You can also use the top command to view a list of
running tasks with the most CPU-intensive ones listed first.
The top command also displays various bits of useful
information about the processes including their PID. It also
has a few interactive commands. For example, you can kill a
process from within top by pressing the K key which prompts
you to enter the PID of the process you want to terminate.

Schedule tasks
There are tasks that are more effective when you run them on
a schedule, for example regular backups and downloads.

The at command helps you schedule tasks that you need
to run at a specific time and date. For example, if you need to
download a large file, it’s best to schedule it late in the night,
for example 1am in the morning. The command at 1am
tomorrow will change the prompt to at> and everything that
you type at this prompt will be run at the time that you
specify. To download a file, point to its location with the wget
command. Press the Enter key to specify another command,
for example, if you want to move the file to a specific folder.
When you are done, press Ctrl+D to save the job. At the time,
the at command will perform the actions you’ve told it to
and the at command allows for fairly complex time
specifications. In addition to AM and PM, the command also
accepts times in the HH:MM format and particular dates.

When you press Ctrl+D to submit a job, the command
prints a job ID. Use the atq command to list all submitted

jobs which you can then remove with the atrm command by
suffixing the ID of the job you wish to delete.

If you wish to run a task repeatedly, then you’re better off
using the Cron daemon. Use the / crontab -e command to
edit your crontab file. The first time you run the command
you’ll be asked to select one of the available command-line
text editors. Each job is specified in seven fields that define
the time to run, owner, and command. The first five
commands specify the execution time, the sixth defines the
day of the week, and the last field lists the command to be
executed. You can use the / crontab -l command to list your
scheduled jobs. System-wide crontabs are stored in /etc/
crontab and user-specific crontabs are under the /var/
spool/cron directory. Taken your first steps have you, but
mastery of the terminal is a long journey, so continue to buy
Linux Format you must! LXF

Top Tip:
tmux: Can create

many sessions, run
tasks in each and

switch between them
without stopping

the others.

http://www.corntab.com/

