
44     LXF222 April 2017

W
riting tutorials is a tricky
game. Most of our tutorials
are self-contained, which on
the whole is handy—there’s no

need to refer to a previous
issue or other source to do
what needs doing. It does
mean, however, that much
matter is devoted to initial set
up, which in many ways is not

really the interesting part. So to mix things
up a little we present to you, dear readers,
the blueprint for our ultimate home server.
In future issues we will describe optional

additions, diversions and other
augmentations to this, and this feature will
always be freely available online in case
anyone misses (or loses) this issue. In part

one we shall cover the bread
and butter tasks: Installing an
operating system, setting up a
static IP address and arming
some defences against
nefarious hackers.

“We present to you, dear
readers, the blueprint for
our ultimate home server.”

In the first in an exciting series of features,
Jonni Bidwell lays the foundations of what will

be the Linux Format reference server.

Ultimate
server redux

Hardware considerations
You can make a home server out of any old bits
and pieces you have lying around, but that
doesn’t mean you should. At least not as
regards old disk drives and power supplies—
these things have a habit of failing as soon as
you start relying on them, and we would rather
our server be reliable.

In terms of processing power, a dual-core
chip from the last decade will suffice for most
things you might want your server to do: host

files, print and run web services. However, if you
plan to use it for streaming movies around the
house (e.g. with Emby), something more
powerful (like a recent Core i5) will be better—
on the fly video transcoding is quite an onerous
chore for older CPUs. Memory (at least DDR3
memory) is cheap nowadays and 4GB will be
more than enough for most purposes. You can
get away with much less, but it’s better to have
more. Integrated graphics (such as are found in

all modern Intel chips and AMD APUs) or the
cheapest of GPU cards will be fine. Once the OS
is installed we won’t even need the monitor, or
mouse or keyboard. We’ll want a large hard
drive for storing data. We’ll put the operating
system and data on separate partitions. Really
they should be on separate drives too, and we’d
encourage readers to invest extra money in
another drive (a small SSD would be a good
suggestion) to make this possible.

available. Apropos to this, we’ll assume that a
wired connection is available. Wireless
adaptors nowadays may boast about using
802.11ac, beamforming and quantum
resonance (one of these is a joke) to achieve
connection speeds in gigabits, but in reality
this is hard to achieve. If getting a cable to
your server’s location is messy, then get some
powerline adaptors—the tech has come a
long way since the early days, where regular
unplugging and plugging back in again were
the order of the day.

So assuming our machine powers up, stick
in the Debian disc/USB stick and reboot.

You will need to disable Secure Boot if it’s
enabled, but UEFI installation is supported.
A graphical installer is available from the boot
menu, but the textual one is perfectly fine.
You’ll be asked the usual questions about
language, location and keyboard layout. Then
we must choose a hostname, we’ll use
lxfserver, but we know that names are
powerful (Mu’adib), sentimental and hard to
choose under pressure. Fortunately, the
hostname can be changed at any time. Leave

 Downloading via BitTorrent is preferred, if only to see ludicrous speeds such as this.

the domain name blank, unless you have a
reason not to, and also leave the root
password blank which has the effect of
disabling the root account. Next, set up a
regular user and password, which will be
granted sudo rights for privileged commands.
Next we must partition our disks. If you have
only one drive, then we’ll need to create a data
partition on it during the installation, where as
if we have two (or more) then we can follow
the default scheme for our OS drive (a small
EFI partition, a large ext4 partition and a small
swap partition) and have a single large ext4
partition on the other drive. Set the data

partition to be
mounted at
/mnt/data to
save fiddling
around with
/etc/fstab
later. Select

‘Finish Partitioning and Write Changes to Disk’,
confirm and the base system will be installed.
Once that’s done you’ll be prompted to add a
network mirror, which is a good idea if you
have a working network connection (it’ll
update packages from a server close to you)
and a bad idea if you don’t (it won’t work), so
choose appropriately. Then you can add some
package groups. We don’t need a desktop
environment, so unselect this one, but Print
Server, SSH Server and System Utilities are all

C
anny readers will recall that we ran
an Ultimate Home Server feature
back in LXF213 [Features, p32]. That

was generally well-received, and much of it
will inform this article, but this time around
things will be even more ‘ultimate’. See the
box (Hardware Considerations, below) for
some hardware guidelines, but by all means
feel free to improvise. There’s nothing
wrong with using old hardware, but there’s a
lot wrong with relying on it to store valuable
data. So take extra care with backups if
that’s all that’s available to you. We won’t
cover physically putting the machine
together, but if you want some tips check
out Zak Storey’s Fastest Linux PC feature
[See p46, LXF219].

One criticism of the ‘penultimate’ feature
was the RAID set up: ‘too complicated’, ‘not
worth bothering with’ and ‘no guidelines on
how to recover from a failure’. So this time
around we won’t bother with that. If you do
plan on setting up RAID, and it’s a good idea if
you have some spare drives, see that feature,
our mdadm tutorial in LXF206 [Tutorials, p76],
or our Next-Gen Filesystems feature [see p48,
LXF193]. In particular, if you plan on using ZFS
filesystem, then you’ll want to invest in error
correcting memory and probably will benefit
from having more than 4GB.

Deploy Debian
We chose Debian for our server’s OS last time
and it’s an excellent choice so we’re jolly well
going to stick with it for this outing. We don’t
care about getting the latest version of Gnome
or a bleeding edge kernel—we want stability
and security (which would be Debian’s middle
names, if it had middle names, but it doesn’t).
At the time of writing, the latest version is 8.7
and ISOs/torrents can be downloaded from
https://debian.org/CD. A live image is
available, but we have no need of trying before
‘buying’, so grab either the small Network
Install image (~250MB) or CD 1 of the install
set (you almost certainly will want the amd64
edition—32-bit architecture is officially old
now). Subsequent packages can be added in
later, assuming a network connection is

April 2017 LXF222     45

“With SSH working, you
should be able to get rid of the
monitor, keyboard and mouse.”

https://debian.org/CD/

useful. Once all this is installed you can reboot
into your freshly minted server.

Before we do anything, we’ll want to set
our machine up with a static IP address. This
will make it easy to find our server from other
machines on the network and access its
resources. By default Debian obtains an
address from your router via DHCP. This is
good because it means connectivity is alive
without us having to do anything, but bad
because the IP address you are assigned
today may very well be different tomorrow.
You can see what your current address is with
the ip a command. Each network interface
gets its own name, there ought to be at least a
stanza for the loopback interface lo and your
Ethernet card, probably eth0 . The line:
inet 192.168.1.100/24 brd 192.168.1.255 scope
global eth0

in the eth0 stanza betrays its IPv4 address
(192.168.1.100), perhaps in the future we will

deal with IPv6 addresses. We also will need the
address of our router (since DHCP also
provides routing and DNS information) which
you may already know but if not can readily
discover by typing routel and looking in the
Gateway column. Don’t worry if your router’s
address looks different, there are a number of
different blocks reserved for private
networks—some routers use 10.*, but
192.168.* seems to be more popular. We’ll
suppose our router’s IP is 192.168.1.254.

Network config
Network configuration in Debian is all handled
by the file /etc/network/interfaces. So let’s
edit this file (you may wish to back it up first)
with sudo nano /etc/network/interfaces .
Replace the line:
iface eth0 inet dhcp

with the following block (leaving intact any
preceding lines such as allow-hotplug eth0):

iface eth0 inet static
 address 192.168.1.100
 netmask 255.255.255.0
 gateway 192.168.1.254

You can change the last digit of the
 address to anything less than 255 that isn’t
already in use on your network, but the
 gateway line must correspond with your
router. Save this file with Ctrl+X, y, Enter.
We also need to tell Debian to use our router
for DNS lookups (which it passes to your ISP).
This time edit the file /etc/resolv.conf and
replace any nameserver lines with a single:
nameserver 192.168.1.254

You may prefer to use Google’s DNS here
(8.8.4.4 and 8.8.8.8), as many UK ISPs have
flaky DNS servers or block certain lookups.

Now we can activate our new network
configuration with:
$ sudo systemctl restart networking

And test it with:
$ ping -c4 google.com

If four packets are safely returned then
huzzah! Else further tweaks will be necessary.

At this point, we should be able to SSH into
our server from another machine on the
network. Provided we remembered to tick the
SSH Server box during install, that is. If not
 sudo apt-get install ssh-server will do the
trick. We can access our server from Windows
via the PuTTY program, or through the new-
fangled Windows Subsystem for Linux (WSL),
although setting WSL up is beyond the scope
of this feature. Or you can do it the grown-up
way from a Linux box with a simple:
$ ssh lxfuser@192.168.1.100

With SSH working, you should be able to
get rid of the monitor, keyboard and mouse
attached to your server. They might come in
handy later if it breaks so don’t go
defenestrating them just yet, but for now

 This is how your disk layout should look if you have a separate drive for storing data on.
(Yes, we did cheat and use VirtualBox to do this.)

Logging into SSH using a key involves first
generating a private key and a public key. It’s
your responsibility to keep the private key as
secret as can be. It’s convenient to have a copy
on every machine you log into the server from,
but also insecure—if one of those machines was
stolen it represents a vector by which our server
could be compromised. Ideally you should keep
the private key on a USB stick and not lose it.

The public key can be just that, and a copy of
it is stored on the server to verify the private key
via mathematical voodoo. To generate a keypair
(ideally on a machine that you’ll access the
server from, rather than the server itself) run
the command ssh-keygen . Accept the default
location and choose a password for your key.

This adds an extra layer of security in the
event the key is purloined. Copy the key to the
server with ssh-copy-id lxfuser@192.168.1.100 ,

it will be appended to the file /home/lxfuser/.
ssh/authorized_keys on the server. We can test
it works with:
$ ssh lxfuser@192.168.1.100

All going well we shouldn’t be asked for a
password this time. If you want to disable
password logins altogether, then you will need to
add the directive:
PasswordAuthentication no

to /etc/ssh/sshd_config.
The keypair itself lives in the ~/.ssh/ folder,

in the files id_rsa.pub and id_rsa.priv. The latter
file is the private key, and should be treated with
care. If you copy it elsewhere, you can tell SSH
to log in with ssh -i /path/to/key but it will be
rightly fussy about permissions.

Since filesystems commonly used on USB
sticks (such as FAT32 and NTFS) don’t support
Linux permissions, you will need to copy your

key off such media (and then run:
 chmod 600 id_rsa

before attempting to log in.

 ssh-keygen gives you a pictorial
representation of your public key—who says
cryptography isn’t aesthetically pleasing?

46     LXF222 April 2017

SSH keys

enjoy the comfort that goes with knowing your
server can be trusted to do its thing and
remain accessible from any computer on your
home network. If you trust fellow users of this
network, then there isn’t too much reason to
be paranoid about choosing a lengthy and
complicated password for your user. However,
if you choose to make your server accessible
to the whole world (see later) then a strong
passwords is essential. You can even go one
better and use public key crypto to better
secure logins. (See the SSH Keys box, left).

One aspect of SSH that’s often overlooked
is its ability to securely transfer files via SFTP.
Any modern file manager will enable you to
log into your server and copy files thereto and
therefrom by visiting the URI sftp://
lxfuser@192.168.1.100. Some file managers
have done away with address bars that you
can actually type into, but Ctrl+L usually does
the trick, Gnome’s Files also allows you to
input server addresses from the Other
Locations section of the sidebar. Remember
you’ll only be able to do read and write to
locations on the server where lxfuser is
allowed to read and write.

Opening the floodgates
There’s plenty of reason not to make your
SSH service available to the whole world.
But being able to do a spot of admin remotely
is also pretty handy. Most home routers now
have a handy interface for forwarding ports,
but they’re all different so you’re on your own
here. We want to make TCP port 22 (SSH) on
our server available to the world, so we need
to forward a TCP port (and it’s a reasonable
idea to make it different from 22, e.g. 10022 to

lessen bot traffic) from our router’s external IP.
Unfortunately for most people, that IP address
will change with the weather, but this problem
can be circumvented using a dynamic DNS
provider (such as the free and excellent
www.duckdns.org). By running a script on
your server, the provider is informed of any
changes to the server’s IP and DNS records
are updated, so your server remains
accessible through an invariant hostname,
such as lxfserver.duckdns.org.

Once your server is publicly accessible, it
won’t take long before bots start trying to log
in with common usernames and passwords.
We can mitigate against this using the fail2ban

 If all else fails, the portforward.com website will help you figure out how to do just that on
your router. However, the process should be straightforward.

program, which we can install with sudo apt-
get install fail2ban . Fail2ban can work with
any service, and once specified number of
failed logins (or just requests to a web server)
are recorded then a temporary ban is
implemented via iptables. The default settings
are fine for our purposes, but it’s good
practice to copy the main configuration file
and make any changes to a local file:
sudo cp /etc/fail2ban/jail.conf /etc/fail2ban/
jail.local

Have a poke around in /etc/fail2ban/
filter.d to see how the various filters work.
And tune in for our next exciting instalment
next month [cue moody orchestral music]. LXF

April 2017 LXF222     47

Router

192.168.1.1
192.168.1.100

Client machines (desktops, laptops and phones etc)

Internet

 Our server, the wonderful services
it will provide and its place in the
wider network.

http://www.duckdns.org

