
Dr Brown’s Administeria

56     LXF176 November 2013 www.linuxformat.com

Dr Brown’s Administeria

Dr Brown’s
Administeria

Little and large
If you’re really impatient to try 
out Smoothwall, there’s a 
compressed VMware image 
available – just download, 
uncompress, and fire it up in 

VMware workstation or player. 
Be aware, though, that this is 
version 3.0 not 3.1. At the 
opposite end of the spectrum, 
the company’s commercial 

arm at www.smoothwall.net 
offers a variety of products for 
network security, web content 
filtering, spam and malware 
filtering, and more.

Dr Chris Brown
The Doctor provides Linux training, authoring 
and consultancy. He finds his PhD in particle 
physics to be of no help in this work at all.

F irewalls are an essential component of
most corporate networks and you can
spend good money (anywhere between

£300 and £10,000) on dedicated hardware
solutions. Alternatively, you might consider
rescuing that ageing PC from the dumpster
and installing Smoothwall on it. To quote the
official website (http://smoothwall.org):
“Smoothwall is a best-of-breed internet
firewall/router, designed to run on commodity

hardware and to provide an easy-to-use
administration interface to those using it”, and
a new version (3.1) has just been released.

If you’d like to give it a try, for a modest
(220MB) download you get an ISO image that
installs in a couple of minutes. Hardware
requirements are minimal. You don’t need to
know anything about Linux to install it, but you
do need to understand the network topology
surrounding your firewall or you’ll come to a
screaming halt, as I did, at the ‘Network
configuration type’ screen.

Coloured zones
Smoothwall divides your network up into
colour-coded zones and asks you to allocate
each network interface to a zone. For example,
a typical scenario might use the green zone for
the private internal network, the orange zone
for the ‘DMZ’ network where your public
servers sit, and the red zone for an internet-
facing connections.

Once initial setup is complete, you configure
Smoothwall via a web-based interface. There
are screens to set up filter rules for incoming,
outgoing, internal and external traffic. This
approach means that you don’t have to get
down and dirty with Iptables rule sets but it
doesn’t entirely absolve you from the need to
understand what’s going on. In addition,
Smoothwall provides proxies for web, instant
messaging, SIP and POP3. You also get screens
with pretty graphs and bar charts of network
traffic and bandwidth, and screens for
examining the log files.

Esoteric system administration goodness from
the impenetrable bowels of the server room.

Firewalls Use open software to build closed  
systems – put that satin finish on your network.

A recent visit to the Eden Project has
strongly reinforced my need to
recycle more and reduce my

carbon footprint. I do a patchy job right
now. It’s true that I recycle the jokes I use
when I’m running training courses, but
that’s because I only know four. I’ve turned
down the speed on my treadmill. I’ve
started shaving on alternate days and
brushing the razor out into the compost.
But I could do so much more.

I’m especially worried about running out
of bits – that is to say, binary digits –
that form the very basis of our digital world.
Think about it – when we’re done with
them, we just throw them all away. Nobody
recycles them. At some point, when the
very last one is used (or it could be the very
last zero, it’s hard to predict) every
computer will come to a screaming halt.
So I have decided to set up a bit recycling
service. You’ll be able to send all your scrap
data to my servers which will sort it out into
zeros and ones and store them on two very,
very large disks. (If you’re concerned about
security I’ll supply a little app that
randomises the order of the bits before you
send them). Then when you need some
more, you just ask for however many zeros
and however many ones you need, and I’ll
send them to you. At first it will be a free
service, but the point is to create a
dependency. Then when I’ve established a
monopoly, and the bits really start to run
out, and the chips are down (so to speak)
I’ll start charging. Eat your heart out,
Mark Zuckerberg.
chris.linuxformat@gmail.com

Smoothwall

Bit recycling

 One of Smoothwall’s many web-based
screens. Here, we see real-time network
traffic on the green and orange networks.

Dr Brown’s Administeria

www.tuxradar.com November 2013 LXF176     57

Dr Brown’s Administeria

This month and next I want to take a look at a couple of
‘small languages’ that are popular in Linux – Sed and
Awk. Both find widespread use in system

administration scripts and it certainly helps if you are able to
at least read and understand the code, even if you have little
call to actually write any. This month I’ll look at Sed.

Some would argue that the command set of Sed doesn’t
really qualify as a language; I will let you draw your own
conclusion on that particular nugget (But first read the box Is
Sed a Language?).

To begin at the beginning, Sed is a stream editor.
It behaves as a classic filter – if you give it a file to operate on,
it will stream input from that file. If you don’t it will read its
standard input, allowing it to sit on the downstream end of a
pipeline to post-process output from some other command.

Whether reading from a file or from standard input (stdin),
Sed reads the input stream a line at a time, performs a
specified set of editing operations on the line, and writes the
resulting line to standard out (stdout). Then it reads the next
line and starts over. Unlike most interactive editors, which
read the entire file into a buffer, sed works a line at a time,
allowing it to operate efficiently on extremely large files.

Substituting with Sed
To get us started, here’s a simple example of using Sed to
perform a substitution – probably the commonest use for
Sed. Suppose we have moved our users’ home directories
from /home to /users and need to modify all the home
directory names in /etc/passwd. That is, we need to change
lines of the form
chris:x:501:501::/home/chris:/bin/bash

to
chris:x:501:501::/users/chris:/bin/bash

This will do the job:
sed s/home/users/ /etc/passwd

Let’s be clear what’s happening here. Sed reads the
password file line by line, performs the substitution on each
line, and writes the result to stdout. It does not modify the
original file. If you really do want to change the original file, it is
tempting to try this:
sed s/home/users/ /etc/passwd > /etc/passwd

But that way lies doom and disaster. When the shell sees the
output redirection it will truncate the output file down to zero
length before Sed even gets to see it. Bye bye password file!
That is generally true of filters – you cannot redirect their
output back to the original file. Instead you would have to do
something like this:
sed s/home/users/ /etc/passwd > /tmp/passwd
mv /tmp/passwd /etc/passwd

In fact, the GNU version of Sed also has an ‘in place’
option, -i, that does the job, so
sed -i s/home/users/ /etc/passwd

would also work, although in this particular case I would
caution you not to mess with the password file unless you are
sure your Sed command does what you think it does.

Our next example is even simpler. The df command
generates a nice table of disk usage for each of your file

systems, but it includes a heading line that can mess things
up in downstream processing. We can delete that initial line:
df | sed 1d

Here, Sed is reading from standard input (the output
piped from df). The d command means ‘delete the line’ and
the 1 means ‘just do it on line 1’. So the first line gets the chop,
but all the others make it through unchanged. This is
equivalent to doing a tail -n +2.

Let’s go back to the s (substitute) command. Suppose you
want to just get the user names from /etc/passwd – that is,
the field up to the first colon. This is easy once you discover
that the ‘old pattern’ part of the substitution can be a regular
expression.
sed s/:.*// /etc/passwd

The example is a little deceptive. The ‘old pattern’ is the
regex ‘:.*’ which matches from the first colon through to the
end of the line. (We’re relying here on the ‘greediness’ of regex
– it starts matching as soon as possible, and carries on
matching for as long as possible). The ‘new pattern’ is empty,
so whatever the regex matches is removed. Magic!

Let’s take one more example of substitution. Suppose you
wanted to change strings like “£25” to “25 GBP”. This is
trickier because the replacement text “GBP” needs to appear
after the number. This command will do the job:
sed -r ‘s/£([0-9]*)/\1 GBP/g’ prices

which will change a line like:
fees range from £20 to £40 typically

to:
fees range from 20 GBP to 40 GBP typically

I’ve drawn a diagram to explain how this works (below).

Small languages The Good Doctor bats aside any suggestion that Sed is 
just too obscure to be useful and lays bare its genius for sysadmin scripts.

Sed ain’t dead, baby

 Sed’s syntax can get tricky
really fast. Here, we dissect the
back substitution example.

Is Sed a language?
You might argue that Sed’s command 
set does not qualify as a programming 
language. In fact, a remarkable Sed 
script by Christophe Blaess shows that 
Sed is ‘Turing Complete’ which means 
that it can (in theory) approximately 
simulate any other general-purpose 

programming language. Julia 
Jomantaite has even written a Tetris 
game in Sed (see the links on Peteris 
Krumin’s blog post http://bit.
ly/17DVI3o). But I don’t see anyone 
re-writing, say, the Linux kernel in Sed 
anytime soon.

The ‘old pattern’

sed -r ‘s/£ ([09]*)/ \ 1 GBP/g’ prices

The ‘new pattern’

Literal ‘£’

Tells Sed to recognise 
extended regular 

expressions

Perform the substitution for 
all matches on the line

The ‘tagged’ part of the 
regular expression 

matches any sequence 
of digits

This ‘back substitution’ 
inserts whatever the 

tagged part of the regular 
expression matched

Dr Brown’s Administeria

58     LXF176 November 2013 www.linuxformat.com

Dr Brown’s Administeria

Sed is really, really old. It was originally 
written by Lee E McMahon around 1974, 
it appeared in the Unix Programmer’s 
Manual for Seventh Edition Unix in 1979. 
Sed was an evolution of the interactive 

line editor ed, and its command syntax, 
which looks strange to modern eyes, 
would have felt much more comfortable 
to a seasoned ed user (or even to those 
of you who are comfortable with the 

bottom line commands in Vi). Even the 
GNU version is 15 years old, dating from 
1998. Sed has in its turn influenced 
other languages that excel at processing 
text; notably Perl.

function foo() {
 echo this is foo
}
call the first function
foo
function bar() {
 echo this is bar
}
call the second function
bar

First, we’ll create a script with the function definitions
stripped out:
sed ‘/^function/,/^}/d’ demo.sh > demo2.sh

Here, we specify a range of line numbers based on a regex
match. Text between a line beginning with function and a line
beginning with } is deleted. If there are several such blocks of
text in the file, they are all deleted. Turning the logic round, we
can extract just the function definitions:
sed -n ‘/^function/,/^}/p’ demo.sh > funcs.sh

Now you can’t do that with grep!

The pattern and hold space
Even with just the few commands we’ve seen so far, together
with a canny use of regular expressions, there’s a lot you can
do with Sed. But in all our examples, the output lines will
appear in the same order as the input lines. We can’t re-order
the material in the file. To do that we need to learn about the
‘pattern space’ and the ‘hold space’. The pattern space is the
text buffer that’s used for the normal line-by-line editing.
The substitute command, for example, operates on the
pattern space, and the p command outputs the contents of
the pattern space.

The hold space is basically a buffer where we can park
text, allowing us to re-order the content of the input stream.

Three key commands (h, H and x) transfer text in and out
of the hold space (these and the other commands are
described in the summary table, bottom p59).

Now, using the hold space typically requires us to use two
or more Sed commands in a single invocation, so before we
go further, let’s see how we can do that. The first way is to use
the -e option on the command line. For example, the
command:
sed -e ‘s/linux/windows/’ -e ‘s/good/bad/’ somefile.txt

will perform both substitutions on each line. Another way is to
separate the commands with semi-colons, like this:
sed ‘s/linux/windows/;s/good/bad/’ somefile.txt

These approaches work fine but get tedious if we have
more than two or three commands. A better strategy is to put
the commands into a file and then reference the file on the
command line. Re-casting our example to use this approach,
we could create a file called (for example) script.sed with
content like so:
s/linux/windows/
s/good/bad/

and then tell Sed to take commands from this file like this:
sed -f script.sed somefile.txt

Think that’s tricksy? Well, maybe, but many of the Sed
commands you find in administration scripts use far more
spectacular regexes. Here’s an example, taken from the file
/etc/init/rc-sysinit.conf on Ubuntu:
sed -nre ‘s/^[^#][^:]*:([0-6sS]):initdefault:.*/DEFAULT_
RUNLEVEL=”\1”;/p’ /etc/inittab

what this command does is extract the default run level from
the inittab file.

Although it’s conventional to use a forward slash to
separate the pieces of a substitution command, it gets ugly
if the old or new patterns themselves contain forward slashes.
Suppose we want to change ‘/home/chris/bin:’ to
‘/opt/bin’. We’d have to escape all those forward slashes
so it would look like this:
sed ‘s/\/home\/chris\/bin/\/opt\/bin/’ foo.txt

Using a different separator (‘:’ in this case) makes it a little
easier:
sed ‘s:/home/chris/bin:/opt/bin:’ foo.txt

Line selection
You can select single lines, or ranges of lines, that you want an
editing command to operate on. The 1d command we saw
earlier is an example of this, selecting just line 1. Or we could
select a range like this: 1,10d to delete the first 10 lines, or
5,$d to delete from line 5 to the end ($ is a shorthand for the
last line of the file). We can also select lines based on a regular
expression match, so
sed ‘/^#/d’ /etc/fstab

will delete lines that begin with ‘#’ (typically comment lines).
This is like an inverse grep (print lines that don’t match). To
get an ordinary grep behaviour we need to make two
changes. First we add the -n option which turns off the
automatic printing of lines. That means we need to explicitly
ask Sed to print the lines we want, like this:
sed -n ‘/^#/p’ /etc/fstab

Notice that I’ve enclosed the command in single quotes to
prevent the metacharacter wars that can so easily result in
casualties on the Linux command line.

Here’s a more interesting example. Suppose I have a shell
script that has lots of function definitions scattered around,
and I’d like to extract the functions into a separate file.
For demonstration, let’s imagine a toy script like this:
#!/bin/bash
echo hello

Lines read one by one 
from file or stdin

append

append

stdout

copy

copy

exchange

The hold space

file

The pattern space

h H x g G

w

p

 The hold space
lets you park text
in what is really
Sed’s one-and-
only ‘variable’.

How old is Sed?

Dr Brown’s Administeria

www.tuxradar.com November 2013 LXF176     59

Dr Brown’s Administeria

Command Description

s Substitute text within pattern space

d Delete contents of pattern space

p Write pattern space to stdout

q Quit

h Copy the pattern space to the hold space

H Append the pattern space to the hold space

g Copy the hold space to the pattern space

G Append the hold space to the pattern space

r Read from a file into pattern space

w Write pattern space to a file

Arguments in Sed

The official Sed manual is at  
www.gnu.org/software/sed/manual. 
Here, you’ll find not only the full 
command reference, but some truly 

brain-curdling examples of scripts that 
emulate standard commands like wc, 
cat, head, tail and uniq. There’s even a 
script that increments a number, proving 

that you really can do arithmetic in Sed 
(but probably don’t want to.) And there’s 
a great chapter on Sed in Unix Power 
Tools [See LXF125, p55).

There are a couple of benefits to putting your Sed
commands in a separate script. First, we don’t need to quote
the commands any more because they are no longer subject
to interpretation by the shell. Another benefit is that the script
is a component that you can re-use.

With all these things in mind, let’s return to our shell script
example and give ourselves a slightly different task. Suppose
we want to simply move all the function definitions up to the
start of the file, with the rest of the script following. Here’s the
script; it’s just three lines:
sed script to separate out functions in a shell script
/^function/,/^}/!H
/^function/,/^}/p
$ { x; p; }

Function shift example
Some explanation is probably in order. The first line uses the
same pair of regular expressions that we used before to
identify the body of a function, except that we’ve added a ! to
reverse the sense of the test. The H command adds the
pattern space to the hold space. So, this line builds up in the
hold buffer all those lines that are outside of a function
definition. The second line prints out those lines that are
within a function definition (so these will come out first, as
required). Finally, the last line uses the line number shorthand
$ meaning ‘the last line of the input’; it swaps the hold space
into the pattern space, and prints it out.

Let’s run this and see what happens:
$ sed -n -f splitout.sed demoscript.sh
function foo() {
 echo this is foo
}
function bar() {
 echo this is bar
}
#!/bin/bash

echo hello
call the first function
foo
call the second function
bar

It’s nearly right – the only problem is that the #! line
should still be up at the top. That’s not too hard to fix – I’ll
leave it as an exercise to the reader!

Sed in the real world
In case you’re thinking that Sed is too obscure to be worth
noticing, here’s a statistic for you: I counted the number of
uses of Sed in the system administration scripts on Ubuntu.
Well actually I let the command:
$ find /etc -type f -exec grep -w sed {} \; 2> /dev/null | wc –l

count them for me. It turned up 259 examples.
The majority of these examples use Sed within a

command substitution to set the value of a variable from the
contents of a config file, something like this:
pid=$(sed ‘s/ //g’ /var/spool/postfix/pid/master.pid)

All this example simply does is remove spaces from the
input. The g switch on the end of the substitution tells Sed to
make the change globally – that is, everywhere within that
particular line.

Another common usage is to take the value of some
existing variable and use Sed to munge it in some way.
This example is taken from /etc/network/if-pre-up.d/vlan
on Ubuntu:
VLANID=`echo $IFACE|sed “s/vlan0*//”`

Notice this uses the alternative back-quote notation for
command substitution.

Here’s another example, using both Awk and Sed in
combination:
arch=`echo “$line” | awk ‘{print $4}’ | sed ‘s/:$//’`

Here, Awk is selecting the fourth field of $line, and Sed is
removing a trailing colon. Finally, this masterpiece is from
/etc/bash_completion.d/sysv-rc:
valid_options=($(\
 tr “ “ “\n” <<<”${COMP_WORDS[@]} ${options[@]}” \
 | sed -ne “/$(sed “s/ /\\|/g” <<<”${options[@]}”)/p” \
 | sort | uniq -u \
))

What this impressive piece of scripting does is use Sed
within a command substitution to generate a command for
an outer Sed command. It makes my teeth curl up just
thinking about it.

I am being a little unfair in presenting this example out of
context. We don’t know what the structure of the input data
looks like, so it’s hard to figure out what’s happening. In my
experience, the key to understanding all of these fancy text-
processing pipelines is to have a very clear idea of the
structure of the data that you’re processing at each stage in
the pipeline.

Next month we will take a good look at another of my
favourite small languages – Awk. See you then. But for now,
enough Sed! LXF

Would you like to know more?

 Sed has more commands but this is a great start.

