
86     LXF176 November 2013 www.linuxformat.com

Our
expert

OpenEuphoria

Juliet Kemp
always likes a bit
of euphoria in
the morning.

Juliet Kemp dives into Euphoria and discovers  
it’s fast to read, fast to pick up and fast to run.

Joyous coding with
OpenEuphoria

Euphoria was first released back in 1993, when it was
shareware. These days, it’s still under active
development, but it’s now an open source project,

available for a variety of platforms including Linux. It’s fast,
can be interpreted or compiled into C, and does a bunch of
run-time checking to help you find bugs quickly. It’s also fairly
easy to read and understand from the get-go, with a
minimum of coding punctuation marks and boilerplate.

Euphoria’s definitely a bit old-school in style; procedural,
with very minimal type checking and minimalist function
declarations. If you’re an OO fanatic, perhaps best stay away.
At times the English-language keyword approach even leaves
it feeling close to pseudocode – but it’s pseudocode that
works. Give it a try; you might find yourself surprisingly taken
by the language.

You can download either a Deb package, or a generic  
tar.gz binary package, from the OpenEuphoria website
(http://openeuphoria.org). At time of writing, the most
recent release was 4.0.5. You can also download and compile
your own C source code release from the downloads page.
Nightly builds are available if you like being bleeding-edge.

If you decide to install the tar.gz package, you’ll need to
unpack it wherever you prefer (probably /usr/local). You can
then either edit /etc/profile as necessary, or create your own 
eu.cfg that looks like this:
/path/to/euphoria/include

This will tell Euphoria where the various standard libraries
are. (You can also set an environment variable $EUINC to do
the same thing.) At this point, you’re ready to go.

Hello World
As is customary, let’s start with Hello World. Create a file
helloworld.ex (by convention, console Euphoria programs
end .ex, GUI apps end .exw, and include files/libraries end .e):
puts(1, “Hello, World\n”)

You run it with eui helloworld.ex, and you will see the
expected output.

puts() (“put string”) may be familiar from other
languages. Here, it takes two arguments. The first one tells
Euphoria where the output is going to (1 is, as ever, the
filehandle associated with standard output); the second one
is the string to output. printf() is also supported for more
complex or formatted output.

To output the same thing to a file, you’d need to open a file
first and assign it to an integer filehandle:
integer myfile
constant STDERR = 2
constant STDOUT = 1

myfile = open(“myfile.txt”, “w”)
if myfile = -1 then
 puts(STDERR, “couldn’t open myfile\n”)
else
 puts(STDOUT, “file opened\n”)
 puts(myfile, “Hello, World\n”)
 close(myfile)
end if

One of the four available types in Euphoria is integer
(See the bottom of this page for the other three). Here, we set
up an integer to use as a filehandle, then try to open the file.
If it works, we’ll get a positive integer (3, in this case, unless
we’ve opened another file earlier in the code); if it fails, we’ll
get the result of -1. We test for success (if/then syntax, as
here, is straightforward; note the end if closing the block)
and act accordingly. Note that puts takes a filehandle
argument; here one statement is output to standard out,
and the other to the file, and it’s important to remember to
close the file afterwards!

Ring the alarm program
Time to get a bit more complicated. We’re going to create a
program that rings an alarm after a certain number of
minutes. In our initial very basic iteration, we’ll set it to run for
just a few seconds:
include std/os.e
global integer Seconds = 5
global object Message = “Time’s up!\n”
procedure ring_alarm(object alarm_text)
 puts(1, alarm_text)
end procedure
procedure run_alarm()
 sleep(seconds)
 ring_alarm(message)
end procedure
run_alarm()

The first line includes a standard library which allows us to
use (among other things) the system sleep() function.
We then declare two global variables. There are only four
variable types in Euphoria:

 object (can take on any value at all).
 sequence (a sequence of any type of object).
 atom (numbers of any sort).
 integers (integer numbers between -1073741824 and

+1073741823; larger integers can be used but must be
declared as atoms).

Numeric calculations are slightly faster on integers than
on atoms. You can also define your own variable types if you

 Tutorial code

www.tuxradar.com November 2013 LXF176     87

OpenEuphoria

To trace the
progress of a
Euphoria program
(ie, to step through
it instruction by
instruction), add
these lines at the
top of any program:
with trace
trace(1)

Quick
tip

need to; check the documentation for more details. Here,
integer is fine for our number of seconds variable.

The two building-blocks of an Euphoria program are
procedures and functions. A procedure performs some
computation, and can take parameters. Functions are like
procedures, but return a value; we’ll use functions in a later
iteration of this program. Both functions and procedures are
closed with end [procedure|function]. Simply defining a
procedure or a function doesn’t run it; you have to explicitly
call it. As you’ll notice, we could do everything here in a single
procedure, but it’s good practice to break different functions
out and makes it easier to extend the program later. Both of
these procedures are straightforward. Run the program with
eui pomodoroalarm.ex, and after five seconds you should
see a message displayed on the console.

Coding standards
Of course, five seconds isn’t very long. The ‘pomodoro’
productivity technique uses sections of 25 minutes, so let’s
change our program to reflect that (only the changes are
shown here, the rest of the program stays as-is):
global atom Seconds
function set_alarm(atom minutes)
 return minutes * 60
end function
procedure run_alarm()
 Seconds = set_alarm(25)
 -- rest of procedure as before
end procedure

Run this, and you should get an alarm after 25 minutes.
However, this is a long time to wait for testing, so you might
want to swap in a smaller value (try 0.1) for 25 while you’re
experimenting. Note that if the type of minutes in set_
alarm() were integer rather than atom, you would be limited
to whole minutes. We’ve also changed Seconds to atom, for
the same reason – you want it to be able to handle random
fractions of a minute. Try keeping it as integer, then putting
0.01 in to replace 25; you’ll get a type check failure, as the
result is 0.06 and seconds cannot be set to 0.06.

A quick note on Euphoria coding standards: the standard
for the standard libraries is to use lower case for local
variables, uppercase for constants, Sentence case for global
variables, and underscores within names. I’ve broadly stuck
with this, though you can choose your own coding standards
if you prefer. Euphoria is case-sensitive.

Another aspect of the Pomodoro technique is following
your 25 minutes of work with a five-minute break. It would be
great if we could set our alarm up to manage that
automatically for us. For that, we could use a sequence, and
loop over it:
global object Work_message = “Work time is up!\n”

global object Break_message = “Break time is up!\n”
global atom Work_minutes = 25
global atom Break_minutes = 5
procedure run_alarm()
 sequence pomodoro = {Work_minutes, Break_minutes}
 sequence pomodoro_message = {Work_message, Break_
message}
 for i=1 to length(pomodoro) by 1 do
 sleep(set_alarm(pomodoro[i]))
 ring_alarm(pomodoro_message[i])
 end for
end procedure

This is all fairly self-explanatory. We set up two sequences,
one to handle the time, and one to handle the message
displayed. Then we use the built-in length() function to
iterate over the time sequence, sleep, and display the
appropriate message. (I recommend, again, changing the
minute values for testing while you’re developing.) Note that
Euphoria indexes from 1.

This is a bit error-prone, though; what if pomodoro and
pomodoroMessage are different lengths? You’ll get an error.
For a more neat, and more maintainable, process you could
use a sequence of sequences to associate your *Minutes
and *Message variables:
procedure run_alarm()
 sequence pomodoro = {{Work_minutes, Work_message},
 {Break_minutes, Break_message}}
 for i=1 to length(pomodoro) by 1 do
 sleep(set_alarm(pomodoro[i][1]))
 ring_alarm(pomodoro[i][2])
 end for
end procedure

Or you could achieve a similar result by changing the global
variables:
global sequence Work_settings = {Work_minutes, Work_
message}
global sequence Break_settings = {Break_minutes, Break_
message}
procedure run_alarm()
 sequence pomodoro = {Work_settings, Break_settings}
 -- for loop as above
end procedure

This is probably the clearest and most maintainable
version, but as you can see, Euphoria is quite flexible in how
you use its variables!

The next thing we can try is to ask the user how long they
want the timer to run for. We’ll keep our existing default
settings, but add a procedure that asks the user for input:
include std/io.e
include std/get.e
procedure get_alarm_times()

There is a Euphoria-specific editor, ed.ex that 
ships with Euphoria, although to use it you may 
have to add the Euphoria bin directory to your 
path in .bashrc:
PATH=$PATH:/usr/share/euphoria/bin

To use it, type
eui ed.ex file.ex

Compared with an editor like Vim or Emacs, 
ed is pretty basic, but it does do syntax 
highlighting and editing correctly. It also has one 

big advantage: if you run it with no argument 
immediately after encountering an error, it will 
read the ex.err file and launch itself with the 
cursor on the line the error came from.

However, I found that it simply wasn’t a good 
enough editor to make it worth using, even for 
this. Check out the OE wiki for a list of 
alternative editors with Euphoria support, some 
of which also have this error location support.
Unfortunately, Vim only has syntax and indent 

support. To access this, install the files provided 
by the eu-editor project to the appropriate 
system Vim directories, and add this line to  
your global filetype.vim file:
au BufNewFile,BufRead *.ex setf euphoria

Turn syntax on in your Euphoria file and you 
should see lovely colours. 

Similar support is available through the 
eu-editor project for MicroEmacs and Nano, 
among others. 

Editors and Euphoria

88     LXF176 November 2013 www.linuxformat.com

OpenEuphoria

There is a big stack of common routines 
available in the OpenEuphoria API, all well 
documented in the manual. These include 
extensive maths support; internet functions like 
HTTP, DNS, and URL handling; locale support; 
and a bunch of others. Euphoria also supports 
multitasking, which is particularly handy if 
you’re interested in writing games or other fast-
moving programs, or carrying on behind the 
scenes while waiting for user input.

If you want to go the graphical route, 
Euphoria has a few GUI options available.  
The cross-platform graphics available in the 
std/graphics.e library are console based, and 
std/image.e can handle bitmaps. Alternatively, 
there is a GTK graphics library at http://eugtk.
wikispaces.com, which also has some support 
for Glade. It’s possible to interface Euphoria and 
C code fairly easily; Euphoria can call C routines 
and use C variables, using open_dll() (for both 

.dll and .so files), defining the function, and 
using c_func() or c_proc() to call it. Check the 
Euphoria docs for more; but this gives your 
Euphoria program even more scope for rapid 
development. Finally, while Euphoria can be 
hooked in to all the standard databases, if you 
want something a little more lightweight, the 
Euphoria Database System is available to enable 
you to develop database-lite apps easily and in a 
Euphoria-oriented way.

Other neat language features

 puts(STDOUT, “Please enter work minutes: “)
 sequence result = get(STDIN)
 Work_minutes = result[2]
 puts(STDOUT, “Please enter break minutes: “)
 sequence result = get(STDIN)
 Break_minutes = result[2]
end procedure
procedure run_alarm()
 get_alarm_times()
 -- rest is as before
end procedure

The std/io.e library enables us to use the library
constants STDOUT, STDIN, and STDERR rather than
declaring them ourselves. get() (from the std/get.e library)
enables us to read a string of characters from a file and
convert them into a numeric value. The other input options
(gets(), for example) will not automatically turn characters
into a numeric value, and we want a numeric value. get() can
take several parameters:
get(integer file, integer offset = 0, integer answer = GET_
SHORT_ANSWER)

file gives the file handle from which to read; offset the offset
to apply to file position before reading; and answer allows you
to choose between two forms of answer:
GET_SHORT_ANSWER : {integer return_status, object
value_read}
GET_LONG_ANSWER : {integer return_status, object
value_read,
 integer num_characters_read, integer initial_whitespace}

The return status can be GET_SUCCESS, GET_EOF,
GET_FAIL, or GET_NOTHING. Here we’re not bothering to
check return status, but best practice would be to include an
error check. Since we’re reading from standard input, and we
only want the value read in, we don’t need to include offset or
answer when calling get. This means we’ll just get the short
answer. We then pull out the answer’s second index to get our
atom to put into Work_minutes (and then Break_minutes).

However, if you run this, you’ll discover that it doesn’t
seem to be doing the right thing. It seems like the values of
Work_minutes and Break_minutes aren’t being changed.
What’s going on?

In fact, if you put in a few logging statements, you’ll find
that the problem isn’t with Work_minutes and Break_
minutes; they are indeed being changed. The problem is that
our global variables Work_settings and Break_settings do
not reflect those changes, because they were assigned before
we got the user input. There are a couple of options for fixing
this problem:
-- Option 1
procedure get_alarm_times()
 -- as above

 Work_settings[1] = Work_minutes
 Break_settings[1] = Break_minutes
end procedure
-- Option 2
procedure run_alarm()
 get_alarm_times()
 sequence pomodoro = {{Work_minutes, workMessage},
 {Break_minutes, breakMessage}}
 -- as before
end procedure

(Comments in Euphoria use either -- as here for a single
line, or /* ...

*/ for multi-line.)
Arguably the first option is slightly neater, but either will do

the job. Run it again and it should work fine.

Calling out
If you’re deep in the throes of work, though, you might not
notice a little message on a console somewhere. It would be
better if we could make it play something. Unfortunately,
while there’s built-in support for Windows system sounds in
Euphoria, there isn’t anything similar for Linux. So the most
straightforward option is to use a system call to fire up an
external program and play an MP3:
global object Play_alarm_command = “mpg123 -q alarm.
mp3”
procedure ring_alarm(object alarm_text)
 puts(1, alarm_text)
 system(Play_alarm_command, 2)
end procedure

I chose mpg123 just because it’s a very simple command-
line program that can be run with no output (the -q switch);
you can use whatever program you like; system() just calls
out to the system to run a particular command. The mode
here, 2, means that the graphics mode will not be restored
afterwards; it’s not necessary to worry about the graphics or
clearing the screen because mpg123 won’t do anything to
the screen.

If you run this, you’ll find that hitting Ctrl+C cancels the
alarm and goes back to our program; until you’ve cancelled
the alarm, the next timer won’t start. In this case this is
probably what you want. If in another situation you wanted to
keep the program running, you’d need to look into using
fork(), or multitasking. (There’s a multitasking guide available
in the Euphoria docs).

Let’s make one final improvement, which will let us have a
quick look at if/then structure. We’ll set the program up to
have a default of running a user-defined number of
‘pomodoros’ (25 minute + 5 minute sequences), with the
option of changing the times. The whole program as it now
stands is on the LXFDVD.

www.tuxradar.com November 2013 LXF176     89

OpenEuphoria

 You can edit the
code with syntax
highlighting, and
have it running in
the background.

The addition we’ve made is the function get_number_
pomodoros(), and the if/then section in set_timing().
As shown here, the if/then syntax is pretty straightforward,
and again uses the end * syntax familiar from functions and
procedures. If you wanted an else, you would add it in the
following way:
if a = b then
 -- do something here
elseif a = c then
 -- do something else here
else
 -- more code
end if

If the user has specified 0 pomodoros, we let them set
their own time preference (and we set the number of
pomodoros to 1, which is a slight hack to simplify run_
alarm()). Having set the timings as the user prefers, we use a
double for loop in run_alarm() to iterate over the ‘pomodoro’
sequence as often as the user requested.

Operations & sequences
The double for loop here seems a little untidy. If you look at
the Euphoria manual, there are a lot of operations you can do
with sequences to concatenate them in various ways – using
the & operator, append() or repeat(). So can we generate an
alarm sequence that looks like this?
{{Work_minutes, Work_message}, {Break_minutes, Break_
message},
 {Work_minutes, Work_message}, {Break_minutes, Break_
message}}

In fact, this is a bit complicated, because the
concatenation operators all squash the sequences into one
another in various ways.
append({a, b}, {c, d}) = {a, b, {c, d}}
append({Work_minutes, Work_message}, {Break_minutes,
Break_message})
 = {Work_minutes, Work_message, {Break_minutes, Break_
message}}
{a, b} & {c, d} = {a, b, c, d}
{Work_minutes, Work_message} & {Break_minutes, Break_
message}
 = {Work_minutes, Work_message, Break_minutes, Break_
message}
repeat({a, b, c, d}, 2) = {{a, b, c, d}, {a, b, c, d}}
repeat({Work_minutes, Work_message, Break_minutes,
Break_message}, 2)
 = {{Work_minutes, Work_message, Break_minutes, Break_
message}
 {Work_minutes, Work_message, Break_minutes, Break_
message}}
repeat({a, b, {c, d}}, 2) = {{a, b, {c, d}}, {a, b, {c, d}}
repeat({Work_minutes, Work_message, {Break_minutes,
Break_message}}, 2)
 = {{Work_minutes, Work_message, {Break_minutes, Break_
message}}
 {Work_minutes, Work_message, {Break_minutes, Break_
message}}}

This leaves us with two possible ways of generating our
alarm sequence through sequence operations:
procedure set_timing()
 Number_pomodoros = get_number_pomodoros()
 if Number_pomodoros = 0 then
 get_alarm_times()
 Number_pomodoros = 1
 end if

 Alarm_sequence = repeat(Work_settings & Break_settings,
Number_pomodoros)
 /* Alarm_sequence now looks like {{W_min, W_mess, B_
min, B_mess},
 {W_min...}, ... } */
end procedure
procedure run_alarm()
 set_timing()
 for i=1 to Number_pomodoros by 1 do
 sleep(set_alarm(Alarm_sequence[i][1]))
 ring_alarm(Alarm_sequence[i][2])
 sleep(set_alarm(Alarm_sequence[i][3]))
 ring_alarm(Alarm_sequence[i][4])
 end for
end procedure

As per the comment, this generates a four-part sequence
to repeat. The alternative looks like this:
procedure set_timing()
 -- as above
 Alarm_sequence = repeat({Work_settings, Break_settings},
Number_pomodoros)
 /* Alarm_sequence now looks like {{{W_min, W_mess}, {B_
min, B_mess}},
 {{W_min...}, {B_min..}}, ... }*/
end procedure

procedure run_alarm()
 set_timing()
 for i=1 to Number_pomodoros by 1 do
 sleep(set_alarm(Alarm_sequence[i][1][1]))
 ring_alarm(Alarm_sequence[i][1][2])
 -- could also use another for loop here
 sleep(set_alarm(Alarm_sequence[i][2][1]))
 ring_alarm(Alarm_sequence[i][2][2])
 end for
end procedure

It’s up to you which of these you think is clearest and most
maintainable method.

And there’s more!
As ever, there are plenty of improvements to be made to this
sample code. For example, you could write code to count
down minute by minute, or even second by second, how
much time there is remaining before your alarm goes off.
Or you could set up something graphical to represent your
alarm program with nice buttons to push. Overall, we’ve
found Euphoria is quick to develop in and gives relatively clear
error messages, so it’s easy to dive in and see where your
inclination takes you. LXF

