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revert this to RGB by calculating G=Y’-(Cb+Cr), and also 
factoring the brightness channel into the red and blue 
channels. This process (known as 4:2:0 subsampling) 
reduces the amount of information in the image by half, yet is 
barely perceptible to the eye.

Now we get to the maths bit. We split each channel up into 
8x8 pixel blocks and for each  block, apply a Discrete Cosine 
Transformation (DCT). For those of you who like numbers and 
Greek letters, take a look at the formula on p85 (Fig 1), for 
those of you who don’t, fear not, we’re going to focus on what 
it does, not how it does it.

Tricking the eye
In simple terms, a DCT changes an image from a spatial 
representation to a frequency representation. Imagine for a 
moment that we take a single strip of pixels along the image. 
The data for this strip of pixels would be a series of numbers 
that we could plot on a graph. Assuming the image wasn’t 
plain that graph would have peaks and troughs. The values of 
the pixels is our spatial representation of the data, while 
storing the frequency of the peaks and troughs is the 
frequency representation of the data.

The reason we go to this trouble is, again, to try to find 
ways to remove as many bits as possible while minimising the 
effect on how we see the image. It turns out that the eye is 
quite sensitive to low-frequency changes in an image (that is, 
gradual variation in colour or brightness), but finds it hard to 
detect the specifics of high-frequency changes (sudden 
changes in intensity, such as lines). In other words, we can 
detect subtle changes in brightness, but as far as the eye is 
concerned a line is pretty much just a line.

Because of this property of the eye, we can lose a lot of 
information from the high-frequency portion of the image 
while minimising what’s noticeable. We do this by 
‘quantisation’. The means that we assign fewer bits to the 
higher frequency parts of the image than to the low frequency 
portions. There’s no fixed way of doing this, and the amount 
you assign to each section of the frequency determines the 
amount of compression (and image quality) you’ll finish with.

Once the DCT, and quantisation have been performed, 
a Huffman code [see LXF175, Tutorials, p87] is created to 
squeeze out any redundant information without affecting the 
image quality any further. The result is the JPEG version.

All lossy compression methods use similar techniques to 
remove as much information as possible while minimising the 
effect on the user. The science of compressing data in this 
way is all about understanding the limitations of humans, and 
exploiting these to hide the errors you inevitably introduce as 
you cast data aside. LXF
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Ben Everard uses the undead to illustrate how JPEG compression 
maximises image quality while minimising image size.

Last month we looked at the DEFLATE algorithm, 
[LXF175, p86] which compresses files so they take up 
less space when stored, but can still be decompressed 

to the original file. It works well, but for some types of file we 
want to squeeze even more space out of them. For example, a 
10-megapixel image with a single byte per colour per pixel 
would take up about 240MB. Using the DEFLATE algorithm, 
we might get this down to tens of megabytes (this, 
incidentally, is what the PNG file format does). However, we 
might want to get it even smaller. 

There’s no way to create a significantly smaller file and 
retain the image quality perfectly. Instead, we have to look for 
the best ways to strip out information so that the impact on 
the quality is minimised. This is the sort of compression used 
in MP3s and almost all video formats. Here we’re going to 
look at the process of compressing an image in JPEG format.

When we talk about maximising the quality of the 
compressed image, it’s important to realise that this is quality 
as it appears to humans, not the actual bit-by-bit difference 
between the original and compressed files that a computer 
might see. The trick in creating good lossy compression 
algorithms is in removing data that humans can’t perceive.

We often think about images having a red, green and blue 
component, but that’s actually not quite how our eyes work. 
We perceive colours in red, green and blue, but we see detail 
just in intensity, regardless of colour. This, for example, is why 
we can’t see colours in the dark, and why some photographs 
look better in black and white. JPEG compression takes 
advantage of this by transforming the image from the RGB 
colour encoding to the Y’CbCr encoding. This is brightness 
(Y’), blue (Cb) and red (Cr). Since our eyes only see detail in 
the Y’ channel, we reduce the resolution of the Cb and Cr 
channels by half. When the image is decompressed, we can 
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JPEG artifacts on the undeadBack to basics: 
JPEG compression

Errors introduced during the compression, known as artifacts, 
increase as you increase the level of compression. However, 
they don’t increase uniformly across the image. Here are four 

JPEG images, with increasing levels of compression. Note how 
the high-frequency parts of the image are the first to degrade, 
while the low-frequency parts hold their quality longer.

1  First we start will minimum compression. This is still 
4:2:0 subsampled, but due to the nature of how our eyes 
work, we just can’t see this.

3  The quantisation has now become so harsh that it’s 
starting to affect the low-frequency portions, such as 
the edges of the zombie’s arms.

2  Looking carefully, you’ll notice how the high 
frequency parts of the images are beginning to lose 
definition as fewer bits are assigned to them.

4  At this level of compression, the high-frequency 
portions are almost entirely lost, yet at less than a single 
bit per pixel, the image is still identifiable.

 (Fig 1) This overly complex formula just splits an image up into its frequency components.
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