
Coding Concepts

revert this to RGB by calculating G=Y’-(Cb+Cr), and also
factoring the brightness channel into the red and blue
channels. This process (known as 4:2:0 subsampling)
reduces the amount of information in the image by half, yet is
barely perceptible to the eye.

Now we get to the maths bit. We split each channel up into
8x8 pixel blocks and for each block, apply a Discrete Cosine
Transformation (DCT). For those of you who like numbers and
Greek letters, take a look at the formula on p85 (Fig 1), for
those of you who don’t, fear not, we’re going to focus on what
it does, not how it does it.

Tricking the eye
In simple terms, a DCT changes an image from a spatial
representation to a frequency representation. Imagine for a
moment that we take a single strip of pixels along the image.
The data for this strip of pixels would be a series of numbers
that we could plot on a graph. Assuming the image wasn’t
plain that graph would have peaks and troughs. The values of
the pixels is our spatial representation of the data, while
storing the frequency of the peaks and troughs is the
frequency representation of the data.

The reason we go to this trouble is, again, to try to find
ways to remove as many bits as possible while minimising the
effect on how we see the image. It turns out that the eye is
quite sensitive to low-frequency changes in an image (that is,
gradual variation in colour or brightness), but finds it hard to
detect the specifics of high-frequency changes (sudden
changes in intensity, such as lines). In other words, we can
detect subtle changes in brightness, but as far as the eye is
concerned a line is pretty much just a line.

Because of this property of the eye, we can lose a lot of
information from the high-frequency portion of the image
while minimising what’s noticeable. We do this by
‘quantisation’. The means that we assign fewer bits to the
higher frequency parts of the image than to the low frequency
portions. There’s no fixed way of doing this, and the amount
you assign to each section of the frequency determines the
amount of compression (and image quality) you’ll finish with.

Once the DCT, and quantisation have been performed,
a Huffman code [see LXF175, Tutorials, p87] is created to
squeeze out any redundant information without affecting the
image quality any further. The result is the JPEG version.

All lossy compression methods use similar techniques to
remove as much information as possible while minimising the
effect on the user. The science of compressing data in this
way is all about understanding the limitations of humans, and
exploiting these to hide the errors you inevitably introduce as
you cast data aside. LXF

Back to basics:
JPEG compression

Ben Everard uses the undead to illustrate how JPEG compression
maximises image quality while minimising image size.

Last month we looked at the DEFLATE algorithm,
[LXF175, p86] which compresses files so they take up
less space when stored, but can still be decompressed

to the original file. It works well, but for some types of file we
want to squeeze even more space out of them. For example, a
10-megapixel image with a single byte per colour per pixel
would take up about 240MB. Using the DEFLATE algorithm,
we might get this down to tens of megabytes (this,
incidentally, is what the PNG file format does). However, we
might want to get it even smaller.

There’s no way to create a significantly smaller file and
retain the image quality perfectly. Instead, we have to look for
the best ways to strip out information so that the impact on
the quality is minimised. This is the sort of compression used
in MP3s and almost all video formats. Here we’re going to
look at the process of compressing an image in JPEG format.

When we talk about maximising the quality of the
compressed image, it’s important to realise that this is quality
as it appears to humans, not the actual bit-by-bit difference
between the original and compressed files that a computer
might see. The trick in creating good lossy compression
algorithms is in removing data that humans can’t perceive.

We often think about images having a red, green and blue
component, but that’s actually not quite how our eyes work.
We perceive colours in red, green and blue, but we see detail
just in intensity, regardless of colour. This, for example, is why
we can’t see colours in the dark, and why some photographs
look better in black and white. JPEG compression takes
advantage of this by transforming the image from the RGB
colour encoding to the Y’CbCr encoding. This is brightness
(Y’), blue (Cb) and red (Cr). Since our eyes only see detail in
the Y’ channel, we reduce the resolution of the Cb and Cr
channels by half. When the image is decompressed, we can

Ben Everard
left his job as an
IT consultant to
spend two years
in Tanzania
installing Ubuntu-
based systems in
schools. Now he’s
putting his skills
to use in the
roiling cauldron
of discovery that
is LXF Towers.

Our
expert

 Using Gimp,
you can fine-tune
the variables
in the JPEG
compression.

84 LXF176 November 2013 www.linuxformat.com

Coding Concepts

JPEG artifacts on the undeadBack to basics:
JPEG compression

Errors introduced during the compression, known as artifacts,
increase as you increase the level of compression. However,
they don’t increase uniformly across the image. Here are four

JPEG images, with increasing levels of compression. Note how
the high-frequency parts of the image are the first to degrade,
while the low-frequency parts hold their quality longer.

1 First we start will minimum compression. This is still
4:2:0 subsampled, but due to the nature of how our eyes
work, we just can’t see this.

3 The quantisation has now become so harsh that it’s
starting to affect the low-frequency portions, such as
the edges of the zombie’s arms.

2 Looking carefully, you’ll notice how the high
frequency parts of the images are beginning to lose
definition as fewer bits are assigned to them.

4 At this level of compression, the high-frequency
portions are almost entirely lost, yet at less than a single
bit per pixel, the image is still identifiable.

 (Fig 1) This overly complex formula just splits an image up into its frequency components.

www.tuxradar.com November 2013 LXF176 85

