
40 LXF151 December 2011 www.linuxformat.com

Conquer the command line

T
he command line is an
incredibly powerful way to
interact with your computer.
As well as giving you access

to many low-level administrative tools,
it’s also an efficient and flexible way to
go about your day-to-day business.

Unfortunately, it’s more than a little
intimidating to the uninitiated.
That blinking cursor, and the
cryptic text that sits before it,
hints at a world of possibilities
but gives no indication of how
you might begin to use it.

knowledge, you can safely harness this
power to work more efficiently and get a
whole lot more out of your machine.

In this article, we’re going to teach you
everything you need to know. We’ll start by
explaining what the command line is, how
to issue commands and how to interpret
the results. We’ll move on to look at two

mini projects. The first will
introduce you to the commands
that you’ll need in day-to-day
computing, as well as show you
some of the tricks that will make
you more productive; the

For all you know, pressing the wrong key
might put the computer into a super-secret
overdrive mode, melt your processor and
destroy all your data.

But you don’t have anything to worry
about. Sure, the command line is powerful,
and with great power comes great
responsibility, but with just the tiniest bit of

“That blinking cursor, and
the cryptic text before it, hints
at a world of possibilities...”

T
he command line is an
incredibly powerful way to
interact with your computer.
As well as giving you access

to many low-level administrative tools,

knowledge, you can safely harness this
power to work more efficiently and get a
whole lot more out of your machine.

In this article, we’re going to teach you
everything you need to know. We’ll start by

For all you know, pressing the wrong key
might put the computer into a super-secret
overdrive mode, melt your processor and
destroy all your data.

But you don’t have anything to worry

$ conquer the\
> command line

 Example CLI files.

Immense power is at your
fingertips – you just need
to know how to use it.
Jonathan Roberts gets
to grips with the CLI…

LXF151.feature1.indd 40 9/22/11 4:08:10 PM

www.tuxradar.com December 2011 LXF151 41

Conquer the command line

Terminology and the terminal

If you’ve ever read about the command line on
the internet, you’ll have seen there’s a lot of
terminology floating around, all of which seems
to refer to very similar concepts.

Two common terms, the shell and the
command line, are quite interchangeable and
refer to the text-based interface; one other
common term, the terminal, has a slightly
different meaning.

The terminal is a program that you access
the command line through. It’s quite simple

really – it receives the input you type on the
keyboard and displays it on the screen; it
also receives the output of the various
commands that you might run, and displays
this on your screen.

In this article, when we say ‘launch a
terminal’, we mean launch this program to get
access to the command line. On Gnome or
Xfce, you’ll most likely be looking for a program
named Terminal, while on KDE the program
you’ll want to launch will be called Konsole.

 To access the command line, sometimes known as the shell, launch the Terminal
application in Gnome or Konsole in KDE.

Your first command: ls

second will look at the tools and tricks
necessary to use the command line when
diagnosing and fixing problems.

Keep an eye out for the example boxes,
as putting theory into practice is by far the
best way to get familiar with this material.
Also, as an added bonus, each of the LXF
staff has revealed their top command-line
trick. Lots to see, lots to learn and lots of fun
to be had, so what are you waiting for?

First things first
Just to make sure we’re all on the same
page, let’s start at the very beginning (as
Julie Andrews once said), before diving in
to some actual work. The command line is
just another interface to your computer,

like Gnome or KDE. What makes it
different is that, instead of clicking nicely
labelled buttons with your mouse, you
control your computer by typing
commands on your keyboard.

There’s nothing magical about these
commands, they’re just combinations of
letters that the computer interprets
according to a well-defined set of rules.
Each command starts with its name, so the
computer knows which one you’re invoking,
and can be followed by options and
arguments that modify the way it works.

Many of these options and arguments
specify which folder or file you want the
command to operate on, and in the
absence of a graphical file manager, there’s

a special syntax for referencing these on
the command line.

On a Linux system, files and folders are
organised in a hierarchy, descending from
the root folder. On the command line, this
root folder is represented by a single
forward-slash, /. All the folders and files
that come below this are then represented
by their names, which are case-sensitive,
with the different folders being separated
by another forward-slash.

For example, my home folder, which is a
sub-folder of the system home folder, which
is a sub-folder of root, looks like this:
/home/jon/. This is a representation we’ll
be using a lot, and it will soon become
second-nature.

Now that you know the absolute
basics, it’s time to issue your first
command. The command we’re

going to begin with is called ls, and all it
does is list the contents of a directory. A
good way to remember this program and

what it does is that ls looks like ‘list’. The first
thing to do is launch a terminal (see the
boxout below), after which you’ll see a new
window appear on your desktop. As well as
having a plain white or black background,
there will also be some obscure-looking text

in the window. This text, with the flashing
cursor that follows it, is called the prompt,
and indicates that your computer is ready
to accept commands.

With your computer at the ready, type ls,
the name of the command, into the
terminal window and press Return. You’ll
immediately see several lines of text appear
in the terminal, followed by a new prompt
indicating that your computer is again
ready to accept commands.

If you look closely at the text that
appears in the terminal, you’ll notice that it
looks familiar... it’s a list of all the files in
your home folder.

Your first argument
Pretty cool, and pretty simple, right? But
why did it list the contents of your home
folder and not your Music folder or some
other altogether?

Well, while working at the command line,
you’re always working within one directory
or another – no command is ever run
outside of this kind of context. Obviously,
every command-line session has to start
somewhere, and by default it’s the current
user’s home directory.

That’s all well and good, but it still
doesn’t really explain why ls returned the
contents of your home directory. What
happened is that, since we didn’t tell ls

Terminology and the terminal

If you’ve ever read about the command line on really – it receives the input you type on the

 To access the command line, sometimes known as the shell, launch the To access the command line, sometimes known as the shell, launch the
application in Gnome or Konsole in KDE.Konsole in KDE.Konsole

going to begin with is called ls, and all it
does is list the contents of a directory. A
good way to remember this program and

window appear on your desktop. As well as
having a plain white or black background,
there will also be some obscure-looking text $ conquer the\

> command line

LXF151.feature1.indd 41 9/22/11 4:08:11 PM

42 LXF151 December 2011 www.linuxformat.com

Conquer the command line

 The ls command with my Music folder passed to it as an argument.

Examples 1
In this section, we’ve mostly been looking at
the ls command to demonstrate the basics of
the command line.

Of course, ls is capable of far more than
just listing the contents of a directory; here’s a
few examples of ways you can manipulate its
output, although you might want to come
back to this after reading about ‘options’ later
in the article:
[jon@adam ~]$ ls -a

Lists all files in a directory, including those that

are ‘hidden’ by placing a dot at the front of their
name.
[jon@adam ~]$ ls --color

Colourises the output to make it easier to read.
[jon@adam ~]$ ls --sort=X

Sorts the output by something other than
filename. X sorts by extension, S size, t time
and v version.
[jon@adam ~]$ ls -l <filename>

Lists details, including permissions, owner and
last modification time, about <filename>.

MINI PROJECT 1 Manage files and folders

otherwise, it simply assumed that we
wanted to see the contents of the current
directory, which at the time was your
home folder.

We can, however, tell ls that we want to
look elsewhere by ‘passing an argument’ to
it. All this really means is that, as well as
typing the name of the command, you’ll
also type the location of the folder that you
want to look in. So, if you wanted to inspect
the contents of your music folder, the
command would be ls Music.

Notice that we just put Music, rather
than the full path to the folder, which would
have been /home/jon/Music. This is
known as a ‘relative path’: since we’re
already in our home folder, if you don’t
specify the full path, the command line will
simply look for a folder with the same name
in the current directory.

You now know how to use one
command, and how to modify the
way it works with a single

argument. For your new-found command
line knowledge and skills to be useful,
however, you’re going to need to know a few
more commands and begin to get a sense
of how you might use them together.

In this section we’re going to walk you
through a simple mini project that will
introduce you to the programs that will help
you manage files and folders, move about
the filesystem and edit text files.

So that we’re all working from the
same page here, we’ve included a mock

home folder on this month’s coverdisc.
Copy it to your own home folder and then
extract it using whatever tool suits you best,
being careful to take note of the folder
name (jons-home).

If you take a look inside, you’ll quickly
get a sense for this mini project’s premise.
My LXF files have gotten scattered all over
my home folder, and you’ve got to help me
track them down and finish the work. It’s
more than a little contrived, but it should
get the job done.

Our first job on the command line will be
to get inside the mock home folder. Launch
a new terminal window, and run the ls

command to check what you have in your
home folder. If you extracted the mock
folder here, amongst this list you should
also see jons-home. To get inside it, you’re
going to need to use the cd command.

cd stands for, at least in our minds,
change directory, and that’s exactly what it
does. If you run cd without any arguments,
it will return you to your own home folder –
not that helpful. If you run it with a single
argument, specifying which folder you
want to change to, it will send you there
instead – much more helpful. The
command to get inside jons-home, then,
is cd jons-home.

As soon as you issue that command...
nothing seems to happen. Well, nothing
quite so striking as when you run the ls
command. If you look closely, however,
you’ll see that the text inside the prompt
has changed. The ~ has disappeared, and in
its place is jons-home, the name of the
current folder.

This part of the prompt will always
display the name of the current folder,
saving you from getting lost. That ~, which
looked strange before, is actually just an
abbreviation for the current user’s home
directory. You can test this if you want, by
typing cd ~ and then running ls to see if

LXF151.feature1.indd 42 9/22/11 4:08:12 PM

www.tuxradar.com December 2011 LXF151 43

Conquer the command line

 A close-up of the prompt. Notice how the prompt changes after the cd command, so that it
always shows the current directory.

White space and special characters
You might wonder why our mock folder was
called jons-home; surely a much more natural
name would be Jon’s Home?

The problem with this second name is that it
contains a space and a single quote (although
acting as an apostrophe), both of which have a
special meaning on the command line.

The space, for instance, is used to separate
the command name from its arguments, and
arguments from one another. If you were to use
a space in the folder name, how would cd or ls
know to interpret the entire name as one,
rather than as separate arguments?

To avoid this kind of confusion, it’s best to
restrict your file and folder names to letters,
numbers, and the hyphen, underscore and full-
stop symbols. If you come across a command
that doesn’t seem to work, and the folder or file
you’re trying to operate on has a strange-
looking name, this might be the problem.

You can get around this by adding the
escape character (a \) before the special
character, but this can get messy.

For reference, to make a directory called
Jon’s Home, you’d have to run the command
mkdir Jon\’s\ Home.

you’re back in your home folder. Hooray!
Now, take a look inside jons-home with ls.
You’ll see that there are several files for each
of the articles I’ve written in this issue. How
silly, and how messy. Wouldn’t it be much
neater if there were a folder for each article?
I think so, and you’re going to do it for me.

The first step will be to create a folder for
each article using the mkdir command.
You’ll probably find this easy to remember
because it looks a lot like ‘make directory’.

For mkdir to work, you must pass it one
argument which specifies the name of the
directory you want to create. So, to create a
directory for this command-line feature’s
files, you’d run mkdir command-feature.

Brace yourself
You could just run this command three
times, replacing command-feature with
first-steps and WoE to create folders for all
the articles, but this is slow and the
command line provides a much faster way
of doing this kind of operation. It’s called
brace expansion.

The name sounds a bit silly, but it makes
perfect sense. Take a look at this command:
[jon@adam jons-home]$ mkdir {command-
feature,WoE,first-steps}

By wrapping the braces around the
three folder names, we tell the command
line to run the mkdir command once for
each of the arguments contained within.
Instead of having to write mkdir three
times, we only write it once and the
command line does all the hard work for us
– how efficient.

This little trick doesn’t just work for the
mkdir command, but any. For instance, now
that we have all the folders, we can move
the files into them (using mv) with a single
command for each group of files:
[jon@adam jons-home]$ mv {command-
notes,command-feature-1,command-
feature-2} command-feature/

Notice how the mv command takes two
arguments, whereas before we’ve only ever
used one. The first argument specifies the
file that’s being moved, and the second the
destination. With commands that take
multiple arguments, it’s important to get
the order right, as there’s no other
indication of each argument’s purpose.

Editing text files
Now that we’ve got the files organised, I
also need some help finishing the articles.
Fortunately, I work in plain text files, so we
don’t need to use a big, bulky program such
as LibreOffice; instead, we can use one of
the many command-line text editors.

The text editors are different to the
commands we’ve seen so far, in that they’re
interactive rather than set-and-run. This is
tricky to imagine, but if you follow our step-
by-step, it will quickly make sense. We’ll be
using the nano text editor, since it’s by far

and away the most intuitive available. There
are many other choices available, and we’d
encourage you to investigate them at your
leisure, since nano won’t always be available
(whereas Vi will almost certainly be on
every Linux system).

Keep it tidy
Now that we’ve organised all the files and
finished the articles, there are just two more
things we should do before finishing. The
first is to create a copy of the files we’ve
edited, in case we accidentally delete
anything, and the second is to tidy up and
remove old, unwanted sets of notes.

Both are easily achieved and make use
of vital everyday commands. The first,
making a copy of a file, uses the cp
command, which works in the same way as
move – specify the file to be copied as the
first argument, and the name and location
of the copy as the second argument (this

White space and special characters
You might wonder why our mock folder was To avoid this kind of confusion, it’s best to

“Instead of writing mkdir three times,
we only write it once and the command
line does all the hard work for us.”

LXF151.feature1.indd 43 9/22/11 4:08:13 PM

44 LXF151 December 2011 www.linuxformat.com

Conquer the command line

 Notice how the -l option modified the way
ls works.

Jon’s top tip
When performing actions on multiple files,
all of which share some common
characteristic in their filename, you can use
a wildcard to act on all of them. For instance,
cp *.txt will copy every text file in the
current directory.

means that the copy doesn’t have to be
stored in the same directory as the
original file).

The second, using the rm command, is a
simple job of passing the filename to be
removed as an argument. Be careful with
this command, however, as there’s no
recycle bin for it – once a file’s deleted, it’s
gone forever.

Neither of these methods will work if you
want to apply cp or rm to an entire

directory, however – they’ll only work on
individual files. To show you how to apply
them to a directory, we need to introduce
you to the idea of options.

An option is much like an argument – it
modifies the way a command runs – only
it’s a lot more specific and allows for far
more possibilities.

Know your options
Each option is associated with a single
letter or a string of text, and is specified on
the command line by stating this letter or
text, with a single dash or two dashes,
respectively, preceding it. To see what we
mean, take a look at this example:
[jon@adam ~]$ ls -l jons-home

The -l option of the ls command stands
for ‘long’, and instructs it to provide further
details about the contents of the folder
being inspected. What’s really cool is that

options can be combined with arguments,
so even while we told ls to provide extra
detail, we were still able to specify which
folder we wanted to inspect.

Applying this to the cp and rm
commands, there’s an -r option to both that
instructs it to work ‘recursively’. This means
they will copy or delete everything
contained within a folder, including sub-
folders, and the folder itself.

1 Open a fi le
To open a text file in nano, change to the
directory where the file is stored, type
nano and pass the filename as an
argument, eg nano command-notes.txt

4 Keyboard shortcuts
At the bottom are commonly used
keyboard shortcuts. The ^ indicates that
you need to press Ctrl at the same time as
the letter. Note that WriteOut means save.

2 Start typing
The entire terminal screen will be taken over
by the nano interface. You can start typing
immediately and see your text appear in the
main part of the window.

5 Status messages
Some shortcuts will result in a status
message and a question being asked of
you. Read the message, and respond
according to the options presented below.

3 Write as normal
Everything will work as expected, including
the Return key for a new line, and the
Arrow keys to scroll when the file gets
large enough.

6 Help screen
Be sure to investigate the Ctrl+G option,
which will provide a help screen with all the
options available. Happy text-editing!

Step-by-step: Nano text editor

LXF151.feature1.indd 44 9/22/11 4:08:15 PM

www.tuxradar.com December 2011 LXF151 45

Conquer the command line

Examples 2
In this section, we’ve looked at a range of
commands and a few advanced command-line
features. To help you solidify your
understanding, here are a few more examples:
 [jon@adam ~]$ cp -r /home/jon/Documents /
home/jon/Documents-bk

Copies the entire Documents folder and its
contents to Documents-bk for safekeeping.
[jon@adam ~]$ mv {demo.txt,demo-1.

txt,demo-3.txt} Documents/Examples
Moves the three demo files to the Examples
folder, which is inside /home/jon/
Documents.
[jon@adam ~]$ mkdir LXF\ \(Version\ 1\)

Makes a directory called LXF (Version 1) using
the escape character (\) to ensure the
command line properly interprets the special
characters (,) and .

Graham’s top tip
My most used command-line couplet is
sudo bash. It’s only of use with Ubuntu-like
distributions (and OS X!), but it lets you
easily create a new session with super-user
credentials – very handy if you’re playing
with config files or services, as you no longer
need to precede every command with sudo.

The first time you do it, you’ll be prompted
for your password, but subsequent times
you won’t be (unless you’re idle for five
minutes or more).

Total control
These simple steps have given you
complete control and power over your
computer. Bear this in mind going forward
because, while you’re running as root, the
potential damage a mis-typed command
can do is far greater (there’s actually not
too much you can do wrong, just be careful

the most part, only modify files in your
home directory.

There are many other files on your
system, however, that are important to the
way your computer works, and these are
not accessible to your normal user. Instead,
they are ‘owned’ by the root user. So, to
modify the way your computer runs, or
investigate many problems, you’re going to
need to become the root user, since that’s
the only one with permission to do so.

On the command line, the way to do this
is with the su command (which stands for
switch user). If you type su - you’ll
immediately be prompted for the root
user’s password. Entering this, a new
prompt will appear and, if you look closely,
you should notice some differences.

The part of the prompt that looks like an
email address no longer has your username
in it, but instead says root@. This part of the
prompt will always display the name of the
user you’re currently working as. As long as
you know the user’s password, you can use
su to switch to any user on the system by
replacing the - with their username.

On Ubuntu and similar systems, it’s
more common to use a command called
sudo (super-user do) to execute individual
commands, rather than run a full session as
root. So, on Ubuntu, you’ll need to prepend
sudo to all of the commands in this section.

MINI PROJECT 2 Diagnose and fix problems

Well, at this point my work is all
done and we can safely move on
to our next, less contrived, mini

project. The plan here is to look at the
command-line programs and tricks that are
useful for diagnosing and fixing problems
on your machine – one of the command
line’s greatest strengths.

We’ll begin by introducing you to
permissions and the su - command, two
concepts that are vital if you’re going to be
able to collect information about the
system and modify the way it works.

We’ll then look at the commands
needed to collect information about
hardware and show you the important log
files that store information about how the
system is running.

We won’t show you configuration files to
edit or how to edit them, since there are far
too many possibilities, and the task of
editing them boils down to running a text
editor in combination with the su -
command – all things we’ll cover anyway.

Permissions, su and sudo
The first thing you need to know regarding
permissions is that Linux is designed with
multiple users in mind.

Every file on the system is then ‘owned’
by particular users, who can specify which
other users are allowed to read or modify
their own files – that is, they can set the
file’s permissions.

This is most apparent in day-to-day
computing if you try to look inside the home
directory of another user. The system just
won’t let you do it. Obviously this is a great
feature since it brings a lot of added privacy
and security to the system.

Where it’s even more important,
however, is in the separation of user and
system files. Most of the time, when
you’re logged in as jon or fred, you have
limited access to the system and can, for

 Notice how jon has been replaced by root, to indicate that after su - all our commands will
now be run by the root user, rather than our usual one.

LXF151.feature1.indd 45 9/22/11 4:08:16 PM

46 LXF151 December 2011 www.linuxformat.com

Conquer the command line

 The long and intimidating output of lspci is best captured by redirecting the output to a file.

Mike’s top tip
Tired of typing logout or exit every time
you’re at the command line? There’s a
handy shortcut. Hit Ctrl+D at the same time
and you’ll be logged out of the current shell
session. If you logged in as a normal user
and switched to root, you’ll be returned
back to the normal user account.

Examples 3
Our final set of examples for this article.
[jon@adam ~]$ su -

Become the root user. Replace - with any
username to switch to that user, although you’ll
need to know their password.
[root@adam ~]$ cat /var/log/errors.log

As the root user, output the contents of errors.
log to the terminal window.
 [root@adam ~]$ cat /var/log/errors.log >> /
home/jon/error-file

Output the contents of the errors.log to the file
/home/jon/error-file, appending the new
data to any existing information in error-file.
[root@adam ~]$ dmesg | grep error

Reroute the output of dmesg to the grep
command, which will then search through the
output and display only lines that contain the
word error. Note that we use > for redirecting
output to a file, and | for redirecting output to
become the input for another command.

happened and then look for its
corresponding entry in this file.

Take careful note of the error message,
and then put it into Google or share it in any
cries for help you make in forums, IRC or
mailing lists. As well as giving more
information to make it easier for others to
solve your problem, you’ll demonstrate that
you’ve already done as much of the leg-
work as you can and people will be far
friendlier when helping.

Hardware information
As well as the log files, there are also times
when it’s useful to provide detailed
information about your system’s hardware.

Rather than looking inside a particular
file, there are specific commands that will
output information about all of the
hardware connected to your system. Two of
the most frequently used are lspci and
lsusb, which, respectively, print out a list of
all the connected PCI and USB devices.

While lsusb might not always be quite
so useful, lspci is incredibly handy as much
of your system’s vital hardware is
connected via this technology, including
most graphics and network cards.

If you try running lspci, you’ll see that
the output it prints out is long and, for the
novice, difficult to decipher. Because of this,
if you wanted to include information about
hardware on a forum or mailing list post,

their awkward-looking names; if you were
brave enough to look inside one with cat or
nano, you’re probably feeling even more
overwhelmed as their contents are often
completely indecipherable unless you know
exactly what you’re looking for.

While we can’t offer you a full rundown
of what every log file does, we can at least
offer some pointers on interpreting
errors.log, perhaps the most useful of the
log files, to ease your worries.

As its name suggests, every error on the
system is recorded here, along with the
time at which it occurred. So, when facing a
particular problem, note the time at which it

when using the rm command, and never
direct it at the / folder).

Now that you know about permissions,
and how to become the root user, we can
begin to look at how to gather information
about your system and get help when you
have a problem. We’ll look at log files first.

While your computer is running, it’s
constantly recording information about how
it’s working and problems it encounters. All
of this information is stored in log files,
which are just plain text and kept in the
/var/log directory.

Log files
As your normal user, you can use ls on this
directory and take a look at the files inside.
If you try to open any of these files with a
text editor or print their output with the cat
command, you’ll get a message telling you
that permission was denied.

This is because the /var/log files are
owned by the root user, as discussed
above. To look inside any of the files, you’ll
have to use the su - or sudo command to
get root permissions, and then run nano or
cat afterwards.

After using ls, you might have felt a little
overwhelmed by the number of log files and

Rather than looking inside a particular
file, there are specific commands that will
output information about all of the
hardware connected to your system. Two of
the most frequently used are
lsusb
all the connected PCI and USB devices.

While
so useful,
of your system’s vital hardware is
connected via this technology, including

“We can begin to look at how to gather
information about your system and get
help when you have a problem.”

LXF151.feature1.indd 46 9/22/11 4:08:17 PM

www.tuxradar.com December 2011 LXF151 47

Conquer the command line

 The most useful command ever made – man. Be sure to run man man to find out how to use
it effectively, and remember that the keyboard arrows scroll through the display.

Andrew’s top tip
Converting large numbers of audio files
(from MP3 to Ogg for example) would take
forever using a GUI, so use pacpl instead.
pacpl --to ogg -r -p /home/music/mp3s
--outdir /home/music/oggs will convert all
your non-free music to Ogg files in a matter
of minutes.

help from other users is dmesg. This
outputs all of the information the kernel
generates, including information about the
boot process and whether or not it
recognises certain pieces of hardware as
you plug it in.

into practice. They’re an indispensable tool.
What’s really cool is that if you want to learn
how to use man pages efficiently, you can
run the command man man and get the
manual page for the man command. LXF

redirect it to. Look at this example with lspci:
[jon@adam ~]$ lspci > lspci.txt

The result is that the long list that lspci
usually prints is no longer displayed on the
terminal, but instead stored in the file lspci.
txt. You can check this with nano, or you
can use the cat command which will print
out the contents of any text file in the
terminal window.

Note that a single > will overwrite the
contents of any existing files, whereas
>> will append the new data to the end
of an existing file – an important and
useful distinction.

Another very useful command that
often gets coupled with redirection to get

you meant to remember which programs
take which arguments, in which order, and
have which options available?

Well, thanks to a command called man,
there’s no need to remember the ins-and-
outs of every command. Run man, and
pass to it the name of almost any program
on your system and it will display the
manual page for that command.

These manual pages list all of the
available options, specify in which order
arguments should appear, and many even
provide examples of how you can put them

Man-to-man advice

you might be better off quoting the entire
output and allowing those more
experienced than you to find the relevant
information.

The question is, after running lspci, how
are you meant to get this text to the forum?
You’re really not going to want to copy it by
hand, and if you’re stuck at a text-only
terminal, rather than a graphical emulator,
there’s no copy and paste support.

Redirection
Instead, the secret is to use a command-
line trick called redirection. The basic idea is
that you can capture the output of any
command, and redirect it away from the
terminal, either to a file or to another
program for further processing. You can
then forward this file to someone via email,
save it to a USB stick or anything else you
can do with a normal file.

To make this happen, you use either the
> or | symbols, placing them between the
command whose output you want to
capture and the file or program you want to

We’ve covered a lot of information
but, having taken your first
steps, hopefully you now feel

more comfortable at the command line. At
least, we hope that if you read articles on
the internet that refer to it, you’ll have
enough knowledge to sensibly and safely
put their advice into practice.

Before we finish completely, however,
and in the finest traditions of TuxRadar,
there’s one more thing. Many of the
commands we’ve looked at take different
arguments or options, but how on earth are

LXF151.feature1.indd 47 9/22/11 4:08:18 PM

