
 Nano 2.2.3

 It’s small, lightweight and is included in most distributions;
 It’s easy to use and gives plenty of on-screen feedback;
 It includes many power-user features to compete with

Vi(m) and Emacs.
Nano runs in text mode at the command line; this may

prompt you to think: “Why would I want to learn a text mode
editor? Kate, Gedit and FooEdit 2000 do everything I need to
on my desktop.” Well, firstly, all regular Linux users and
administrators should be well-versed in a command line

editor. If something goes wrong
with the X Window System, for
example, you’ll end up at a CLI
prompt and your skills will be
essential for editing config files.

Secondly, if you set up a
Linux machine as a server, it

almost certainly won’t include X or any kind of graphical tools,
so you’ll be using a text mode editor frequently. Learning
some core skills beyond simply opening and saving files can
make you work much more productively, so that’s what we’ll
be looking at here.

As for a quick history, Elm was a Unix email client dating
back to the late 80s. Then came Pine, which some users said
was an acronym for ‘Pine Is Not Elm’. Pico was Pine’s text
editor, but wasn’t totally free software by the GNU definition.
So Tip, (Tip Isn’t Pico), was created and later renamed to
Nano, (Nano’s ANOther editor). Fun, eh?

W
e seem to live in an increasingly polarised
world. You either love Microsoft or you love
Apple. You drink Coke or you drink Pepsi.
You’re either with us or you’re against us.

Time is money, and in this fast-paced world, who can possibly
afford to consider anything other than the simple options
repeatedly presented to us?

Of course, as a Linux user, you’ve already chosen a third
way – a separate route from the two major commercial
operating systems, Windows and
OS X. You know that there’s
almost always another option
aside from A or B. You’ve made
a deliberate decision to try
something different, and among
the rewards are the operating
system you’ve got on your trusty computer today. But what
about text editors? If you look at nigh-on any discussion
about this topic on the internet, it appears that there are only
two players in the game: Vi(m) and Emacs. Both editors are
hugely powerful and complex – indeed, one of the common
criticisms of Emacs is that it’s effectively an operating system
that just happens to include a text editor. But they have steep
learning curves and obscure functionality, behind cryptic
commands and Twister-like key combos.

Let’s take a look at a third option, Nano (www.nano-
editor.org). This editor is great for a number of reasons:

Nano:
THE THIRD WAY

Hate Vi’s terseness or the Emacs key combinations? 
Mike Saunders introduces Nano, a text editor that 
packs a lot of punch for its diminutive size.

“Nano includes many
power-user features to
compete with Emacs.”

Nano

56     LXF131 May 2010 www.linuxformat.com

Masterclass

LXF131.nano 56 12/3/10 4:31:58 pm

Finding your way around

 Nano comes
with this file
navigator that
you explore with
the arrow keys.

 Pain! Look at this horribly broken up text. If only there
was a straightforward way to make it reflow nicely…

B
efore we delve into Nano’s features, let’s spend a
moment to get fully acquainted with the interface for
the editor. Entering nano on its own at the command

line brings up Nano in its default state. If you’ve tried Emacs
before but have been put off by the lack of feedback on the
screen, you’ll be pleasantly surprised by Nano – and the less
said about Vi the better. You can start entering text straight
away, using the cursor keys to move around.

Along the top is a bar containing the Nano version number
and the name of the file being edited. Below, we haven’t
opened a file yet, so it says ‘New Buffer’. To open a file, you
simply type its name: nano filename.txt. Along the bottom is
a mightily helpful quick reference to the most common
keybindings, in this format:
^O WriteOut

This info is deliberately very short to cram as much as
possible on to the screen, so see the ‘Quick keybinding
reference’ box for the full details. Here, the ^ symbol refers to
the Ctrl key on the bottom-left of your keyboard, so ^O means
Ctrl+O (it can be lowercase or uppercase). WriteOut saves the
file to disk, so if you press Ctrl+O you’ll see the following
prompt at the bottom:
File Name to Write:

If you’ve opened an existing text file, the filename will be
filled in here automatically, ready for you to hit Enter.
Otherwise, you can type in a new filename. However, here’s
where we start to see how powerful Nano really is. Hit Ctrl+T
and the screen will change into an excellent two-column file
browser. Use the cursor keys to navigate through directories
to find the filename you want to save to.

As you’d expect, this file browser is available for other
tasks. Hit Ctrl+X to exit the browser, then Ctrl+C to cancel the
save operation. Now press Ctrl+R to read a file and insert it
into the current editing session. When the filename prompt
appears, hit Ctrl+T and find the file you want to include.

So that’s opening, saving and inserting files covered. You’ll
always find the most important keybindings at the bottom of
the screen, so you can’t get lost. Let’s look at cut and paste.
Nano works differently from many editors in this regard, but
you’ll find it extremely efficient after using it for a while.

Type in five lines of random text, and then move the cursor
to the second line. Hit Ctrl+K and the line will disappear. It
doesn’t matter where you position the cursor on the line; the
whole thing will be ‘kut’ away. Now, the contents of the line are
stored on the clipboard, so you can move somewhere else
and press Ctrl+U to ‘uncut’ it (paste it into the document).

You can do this for multiple lines too. Position the cursor
on the top line of the chunk you want to cut, and then press
Ctrl+K on as many lines as you want to cut. This will overwrite
the clipboard’s previous contents with the chunk you cut out.
When you’re done, move the cursor to the place at which you
want to paste the text, and hit Ctrl+U – all the lines removed
in the cutting session will be dropped back into the
document. Press Ctrl+U multiple times for multiple pastes.

The line number isn’t displayed by default, but if you press
Ctrl+C, you’ll see a status message showing the line, column
and character the cursor is currently on, plus a percentage
indication of how far you are through the file.

 Ctrl+X Exit the editor. If you’ve edited text 
without saving, you’ll be prompted as to 
whether you really want to exit.

 Ctrl+O Write (output) the current contents of 
the text buffer to a file. A filename prompt will 
appear; press Ctrl+T to open the file navigator 
shown above.

 Ctrl+R Read a text file into the current editing 
session. At the filename prompt, hit Ctrl+T for 
the file navigator.

 Ctrl+K Cut a line into the clipboard. You can 
press this repeatedly to copy multiple lines, 
which are then stored as one chunk.

 Ctrl+J Justify (fill out) a paragraph of text. By 
default, this reflows text to match the width of 
the editing window.

 Ctrl+U Uncut text, or rather, paste it from the 
clipboard. Note that after a Justify operation, 
this turns into unjustify.

 Ctrl+T Check spelling.

 Ctrl+W Find a word or phrase. At the prompt, 
use the cursor keys to go through previous 
search terms, or hit Ctrl+R to move into replace 
mode. Alternatively you can hit Ctrl+T to go to 
a specific line.

 Ctrl+C Show current line number and 
file information.

 Ctrl+G Get help; this provides information 
on navigating through files and common 
keyboard commands.

Quick keybinding reference

Nano

www.tuxradar.com May 2010 LXF131      57

LXF131.nano 57 12/3/10 4:31:59 pm

Power-users rejoice

 If you’re a
programmer,
take the time to
set up syntax
highlighting.

N
ano carries forward one of Pico’s most celebrated
features – text justification. This is where a block of
text is arranged to fit a certain page width by

changing the wrap and reorganising the words. Few text
editors include such functionality, especially at the lighter end
of the range, but because Pico was used for email and
newsgroup messages, where you’d want to reflow multiple
levels of quoted text to fit on an 80-character-wide screen,
this feature was given much attention.

In a new Nano session, enter the following:
the cat sat

on a very large

fluffy mat

Now, imagine that you want to rearrange this text so that
it’s all on a single line. In many text editors, you’d have to do
this manually, going to the end of each line and hitting Delete.

Not so with Nano. Just position the cursor anywhere in
those three lines and hit Ctrl+J, and you’ll see this:
the cat sat on a very large fluffy mat

A status message appears towards the bottom of the
screen, saying ‘Can now UnJustify’. Hit Ctrl+U to revert.

By default, Nano justifies text to the width of the editor
window. If you’re running it inside an X terminal, create some
text and use cut/paste to fill half of the window with it. Hit
Ctrl+J to justify the text, then
resize the window and hit Ctrl+J
again. You’ll see that the text is
reflowed to fit the window size.
Nano justifies based on
paragraphs – chunks of text with
blank lines separating them.

So far so good, but the real power comes with the -r
option. Quit Nano and restart it with nano -r30. This tells
Nano that we want the justify operation always to wrap to 30
characters (columns of text), regardless of the size of window.

There are some great uses for this feature. For instance,
on the Linux Format website we send out a monthly
newsletter to signed-up readers with news, features and so
on (www.linuxformat.com/newsletters). Because we’re
geeks of the highest order, our terminal windows are always
insanely huge. However, when sending out the newsletter we

want it to be limited to a certain width, so that it will display on
virtually any machine. Different mail clients handle plain text
differently, so to make things as simple and reliable as
possible, we use nano -r68 newsletter.txt, type away and hit
Ctrl+J when we want to format it for sending.

Another example: imagine you’ve found a great command
on the internet with a large number of parameters, such as a

mencode command for
converting a video file. Due to
the web page presentation,
when you copy and paste the
command, it ends up over 20
lines. Instead of going through
and removing all newline

characters, simply start Nano with nano -r1000. Paste the
text in (Shift+Insert works in many X terminals), hit Ctrl+J
and it’ll be folded into one neat line that you can paste into a
terminal. Alt+J justifies all paragraphs in the file at once.

On to some other features. Nano can automatically create
backups of files after you’ve saved them. Pass the -B option
(nano -B config_file.txt), and when you hit Ctrl+O to save a
file, it will make a backup of the older version with a tilde
character at the end (config_file.txt~). This is well worth
doing if you want to edit a critical system file – if something
goes wrong, you can retrieve the older version in a snap.

Search and replace is fully supported: hit Ctrl+W (Where
is…?) and you’ll be given a prompt. Enter a word to find it or
hit Ctrl+R to do a replacement. If you hit Alt+R at this prompt,
you’ll see that it turns to [Regexp], which enables you to
search using regular expressions. Using the up and down
cursor keys, you can navigate through previous search terms
– even ones from earlier sessions. These are stored in your
home directory in .nano_history.

Nano’s interface is customisable: as you get more familiar
with the editor, you won’t need the quick reference for
keybindings at the bottom. Using the -x command, you can
tell Nano never to show it. With the -c option you’ll always see
the status bar (showing the line number you’re on), while with
-S (capital S), you can force Nano to scroll through text one
line at a time, rather than per page. You can mix all of these:
nano -xcSr68 filename.txt

Here we want no help, a permanently visible status bar,
smooth scrolling and text justification at 68 characters. Just
like mum used to make!

 With a quick tap of Ctrl+J, the text is smoothed out to
the way it should be. There is peace around the Earth.

“Nano carries forward
one of Pico’s most
celebrated features.”

Nano

58     LXF131 May 2010 www.linuxformat.com

LXF131.nano 58 12/3/10 4:32:0 pm

Developer delights

Nano’s main configuration file is /etc/nanorc. 
However, it’s not the only one: /etc/nanorc can 
include other configuration files, such as the 
syntax highlighting definitions in /usr/share/
nano. In nanorc, you can set default options so 
that you don’t explicitly need to provide them at 
the command line. Each is stated in this format:
set backup

This is equivalent to the -B option at the 
command line. Here, the line is commented out 

with a hash mark, so Nano will perform the default 
action, which is to not save backups. 

If you remove the hash mark, it will turn 
backups on by default, or if you explicitly want to 
tell Nano that it shouldn’t make them, change the 
line to read like this:
unset backup

All the options are accompanied by a snippet of 
description text, so you shouldn’t find that 
anything there is unfathomable.

Editing the config file

 Tweak some of the deeper workings
of Nano in the configuration file.

 Syntax
highlighting
makes source
code much easier
on the eyes.

T
here’s even syntax highlighting for various
programming languages in Nano, although this is
disabled by default for performance reasons. On very

old machines, parsing large source code files to give every
part its correct colour is rather CPU-intensive, but on any
machine built in the last 10 years, you shouldn’t notice the
performance impact.

To enable syntax highlighting, open the Nano
configuration file (see the box below) and scroll down to the
bottom section. You’ll see a bunch of lines like this:
C/C++

include “/usr/share/nano/c.nanorc”

The hash marks are comments, so by removing the hash
mark from the second line, you tell Nano to read c.nanorc at
startup – the file that describes syntax highlighting for C and
C++ source files. If you look further down the list, you’ll see
that you can include syntax highlighting definitions for
Python, Perl, Ruby, Java, HTML, Tex and other formats.

Let’s create a highlighting file for a language not supported
by default in Nano. Go into /usr/share/nano and copy sh.
nanorc to the language you want to support, for example,
php.nanorc. The reason we’re using sh.nanorc is that it’s the
easiest to modify: if you look at c.nanorc, for instance, it’s an
entertainingly complex mixture of regular expressions that
may just explode your brain.

In php.nanorc, the first non-comment line you’ll see is:
syntax “sh” “\.sh$”

This tells Nano to use the formatting here in any files
ending with .sh, so change both instances of sh to php here.
Look down a couple of lines and you’ll see:
color green “\<(case|do|done|elif|...

When the keywords case, do, done, elif and so on appear
in the source code file, they’re coloured green. You can delete
keywords and add new ones, but make sure the structure of
the line stays intact and that keywords are separated by |
pipe characters. The line underneath probably looks like
gibberish if you’re not used to regular expressions:
color green “(\{|\}|\(|\)|\;)...

Let us explain: this defines the colour used for certain non-
alphanumeric characters, such as brackets and semicolons.
As with the keywords, these are separated by pipe characters,
but because they’re special characters that could be part of
instructions to the syntax highlighting parsing engine, we
have to ‘escape’ them using a backslash.

If we just had {|}|(|) to identify the brackets in the PHP
code, it wouldn’t work: Nano’s parser would get confused,
thinking they’re instructions. By using a backslash before

each one, we tell Nano that they’re to be treated as individual
characters. So you can place other non-alphanumeric
characters in there, but put a backslash before each one.

Most of the other lines in your php.nanorc follow the
same format. Towards the bottom you’ll see this line:
color cyan “(^|[[:space:]])#.*$”

This tells the parser that all chunks of text starting with a
hash symbol should be coloured cyan until the end of the line
– in other words, shell script comments. In PHP, we can also
use double slashes for comments, so make a copy of the
above line and change the hash to \/\/:
color cyan “(^|[[:space:]])\/\/.*$”

With this addition, when you open PHP files, you’ll see that
double-slash comments are now coloured correctly.

There are other useful features for programmers too.
When editing text, hit Alt+I to enable auto-indent mode,
where the cursor will remain in the same column each time
you hit Enter. This is particularly useful in languages where
white space is syntactically important, such as Python.

When saving a file, you might want to convert it to a
different format for another platform. Linux and Windows use
different invisible line-ending characters, which can cause
headaches. Try opening a Unix-created text file in Windows
XP’s Notepad, for instance – the newlines are all messed up.

So, when you’ve got the filename prompt, you can hit
Alt+D to switch between Unix and Windows/DOS style text
files. (Alt+M switches you to Mac formatted ones, but that’s
only really applicable to Mac OS 9 and earlier.) With the power
of Nano, you can take someone’s broken-up notes, flow it into
line-break-free text, and then give it back to them in a format
that their silly non-Linux OS can understand. Huzzah! LXF

Nano

www.tuxradar.com May 2010 LXF131      59

LXF131.nano 59 12/3/10 4:32:2 pm

