
Tutorial Elgg

www.linuxformat.com84     LXF130 April 2010

SELinux: Guard

SELinux Set up a secure machine
without hampering your workfl ow

Bob Moss explains how to lock down your Linux system without the added 
security hindering you as you go about those all-important day-to-day tasks.

F
or those of you who haven’t heard of SE ‘Security
Enhanced’ Linux before, you’re probably not alone.
SELinux comes with most mainstream distributions,

but is disabled by default (or even actively turned off by
users), which leaves this powerful security tool under-used
and reflecting forlornly on its poor fortune.

You may wonder why this might be. Back in the early days
after the US National Security Agency released it under an
open source licence, SELinux was merged with the
mainstream Linux kernel. However, it tended to get in the way
of what people were doing on a day-to-day basis with their
Red Hat systems, and because it was simply too unwieldy or
complex for the average user to tinker with, people usually
just gave up and disabled the tool entirely.

However, things have come a long way since those days
and even competitors such as AppArmor have sprung up
with a view to providing a similarly high level of security to
the standard Linux desktop.

So, what’s the point of SELinux? What it does, essentially,
is categorise all users, processes and files, and then grant
these ‘objects’ only the bare minimum of permissions that
they need to fulfil their function. If the object tries to do
anything else, or interferes with what another object is doing,
it’s stopped and then reported to you in accordance with
your security policy.

However, SELinux is only distributed with rules that deal
with the most common scenarios, meaning you could one
day be trying to complete one of your important daily tasks
and find that SELinux jumps in and stops you.

 Your policies aren’t just restricted to files - they can act
on running processes and users too.

But before you throw your computer out of the window in
a fit of pique, or deactivate SELinux immediately, it’s
mercifully easy to give yourself the permissions you need to
do these things as and when you need to. Over time, your
patience will pay off as you find yourself with a much more
secure system than before. This tutorial will explain how
SELinux security policies work, how to change the SELinux
running mode for particular scenarios and how to check the
permissions you have, once you’ve finished tailoring it to your
typical computing habits.

First steps
The first thing to do is find out whether or not you already
have SELinux installed on your system. Fedora users should
find that it’s installed by default, thanks to its Red Hat heritage
– simply type the following line into a standard user terminal
to see which mode SELinux is operating in:
getenforce

You should see one of three results appear: enforcing,
permissive or disabled. The first result tells you that SELinux
is enforcing all the defined security policies and reporting any
breaches. Permissive indicates that SELinux is reporting
breaches but not actively enforcing the security policies that
have been defined, and the third result speaks for itself.

Ubuntu users will need to take a few extra steps to install
SELinux, because AppArmor is typically installed by default.
Have a read of the ‘AppArmor alternative’ box on this spread
and, if you decide to proceed with SELinux, install it via your
package manager. Once it’s all finished, type the following
command into a terminal to start it:
sudo sed -i ‘s/SELINUX=.*/SELINUX=enforcing/’ /etc/

selinux/config

This changes the SELinux state from directly within its
configuration files. You could also change enforcing to

Bob Moss
Bob splits his time
between coding
things and
studying for his
computer science
degree course.

Our
expert

LXF130.tut_selinux 84 15/2/10 10:34:16 am

www.tuxradar.com April 2010 LXF130      85

SELinux Tutorial

 your system
Those who have Ubuntu or OpenSUSE should 
find that AppArmor is installed by default, 
although users of the latter distro will need to 
enable it manually (as shown in the screenshot). 
Anyone who’s used SELinux should find certain 
aspects of AppArmor very familiar. For example, 
AppArmor has Enforce, Complain and Disabled 
modes, which correspond directly to the three 
you would use in SELinux. It’s also a little easier 
to start and stop – Ubuntu users can simply use 
the following command:
rcapparmor start

Substitute the start for stop to produce the 
opposite effect. You can also use reload to 
reload all current AppArmor profiles (the 
equivalent of SELinux rules), or status to display 
how many profiles are loaded in Complain and 
Enforce modes. Event-logging is similarly 
straightforward to manipulate:
racaaeventd start

As before, you can simply use stop instead of 
start to have the opposite effect.

One advantage of AppArmor is its Learning 
mode, which watches how your machine is being 
used for as long as you choose and then uses 
this information to decide what should and 
shouldn’t be allowed to happen. 

Chinks in the armour
This is particularly useful for webserver 
configurations, where localised access would 
ideally be restricted, and web pages would only 
be accessed by particular people in certain ways.

While this sounds like a fantastic idea, there 
are some limitations. It’s easy for AppArmor to 
pick up bad habits while in Learning mode, 
meaning that it might see an event that you 
would want to be against security policy, but 
wouldn’t receive a report about it because 
AppArmor considers it to be normal behaviour. 
This can be mitigated with care, and in certain 
scenarios might not be too costly, but this could 
be considered a downside for some. SELinux 
doesn’t have this problem, because it’s 

distributed with a set of security policies for the 
most commonly occurring scenarios and it then 
leaves it to the user to define more specific 
policies as necessary. This does require more 
effort and some prior knowledge, but also means 
that you should hear about any undesired 
behaviour on your machine as soon as it occurs. 

Both of these approaches have pros and cons, 
but after this tutorial you should be able to make 
a more informed choice about which you install 
on your favoured distribution.

The AppArmor alternative

permissive or disabled as appropriate, to change the
current SELinux operating mode as you require.

Fedora users have a much easier route to enabling
SELinux and changing the operating mode. One possibility is
to use the GUI tool in the System > Administration area of the
Gnome desktop and change it using the drop-down. Then
click Apply. If you prefer, you can perform the same action
using the command line, by typing the following:
echo 0 > /selinux/enforce

The 0 operator tells SELinux to disable Enforce mode for the
duration of the current session and sets it to Permissive
mode instead. If you decide
you want to re-activate
Enforce mode, simply run
the same command again
but with a 1 instead of the 0.

If you’d rather make the
mode change permanent,
open up /etc/selinux/config in your text editor with root
permissions and change the relevant SELINUX line to:
SELINUX=enforcing

Again, you can change the enforcing part to permissive or
disabled, depending on your requirements.

You may be wondering at this point why you’d want to
change SELinux operating modes in the first place. The
reason it’s important to be able to is because if you need to
perform any large maintenance tasks or troubleshoot
problems, you may find that SELinux policies (which were
designed for daily desktop use) get in the way. Therefore, it’s
useful in these instances, but for most of the time, you’ll be

using your desktop as usual and should be able simply to
leave your tailored SELinux configuration running quietly in
the background without it bothering you.

Allow me
Now that SELinux is running, you may occasionally find that
things you did before have stopped working (or you may see
a dialog box telling you that you’re about to be reported back
to yourself). When this happens, you could try a useful tool
named Audit2allow, which takes the details of the most
recent actions that SELinux has prevented and gives you the

ability to allow them. Before
you can use this though,
check whether the auditd
daemon is running, by using
the following command:
ps -ef | grep auditd

If you see auditd in the list
that appears and it doesn’t have grep in front of it, then you
know that the daemon is running. Don’t panic if it doesn’t
appear though, because the only difference to the command
below is to substitute the a for a d:
audit2allow -l -a -M local

The -l option reads the denials since the last policy reload
(in most cases, this will be from when you logged in), and the
-M moves the denials into a module you can use for a rule.
Bear in mind that if you want to use this line more than once,
you’ll need to change the name local to avoid any conflicts.
When you’re happy with the rule, all that’s left to do is to build
it by typing semodule -i local.pp.

“Your patience will pay
off as you get a much
more secure system.”

LXF130.tut_selinux 85 15/2/10 10:34:17 am

www.linuxformat.com86     LXF130 April 2010

Tutorial SELinux

SELinux: Make
Now that you know how to use SELinux, why not create your own rules?

You can get even
more information
on SELinux
from http://
selinuxproject.org.

Quick
tip

 Fedora comes with a wizard that enables you to set up
your own security policies quickly and easily.

 If the command
line scares you,
this GUI front-
end will help you
manage SELinux
just as well.

Never miss another issue Subscribe to the #1 source for Linux on page 66.

“There may be parts of
your system that could
do with protection.”

Y
ou’ve now set up SELinux and know how to create a
new rule to help you out when you’re blocked from
completing your daily tasks on your Linux box.

However, there may be certain files and parts of your system
that you’d prefer to keep away from prying eyes, or think
could do with some extra protection. In these instances,
you’ll need to create your own rules.

However, rules are not much good if you have no means
of checking which SELinux policies apply in a particular
situation, so we’ll cover that here as well.

Now that you’ve established that SELinux is present and
running in the right operating mode, learnt how to bypass
being blocked for legitimate activity, the next step is to start
applying your own specific rules. If you wanted to, you could
just stick with Fedora’s handy in-built rule-making wizard, but
if you’ve got this far, you probably want to know more about
what’s going on behind the scenes with security.

The first consideration is the SELinux concept of a ‘user’.
This isn’t the same as your typical system user, who can
elevate to root using sudo or
su. In fact, many system users
will have the same SELinux
user, so for this reason it’s
easier to regard SELinux users
as a kind of ‘user group’, each
of which could contain any
number of different system users, all of whom share the
same roles and permissions. When an SELinux user is
mentioned in a rule or system policy, there tends to be a _u
appended to the end of the name (bob_u, for example).

Next, let’s consider user ‘roles’. An SELinux user can have
as many or as few of these as you specify for them, and each
role is defined by the SELinux policy. Examples of roles you
might bestow are ‘visitor user’ or ‘website administrator’.
Users of objects associated with a role usually have _r at the

end of the name to follow
convention, so these too are
relatively quick to spot when
looking through a policy.

Each rule could also refer to
a ‘type’ (on the internet, you
may occasionally see this

called a ‘domain’), and this determines what resources can
and can’t be accessed. Again, by convention, the type name is
typically suffixed with _t

Armed with these three pieces of information, the next
step is to create a ‘context’ for your rule. This is essentially a
means of putting the user, role and type together in the first
half of the rule, or you could use them individually.

Keep it in context
Optionally, you can add a ‘range’ to this context, but this isn’t
strictly necessary unless you’re applying a rule to many
different types. Your context could take on the following form:
user:role:type:range

While an example context without a range would be:
system_u:system_r:xserver_t

In this context, you can see that you’re referencing a system
user with a system role with the access privileges of the
xserver type (which is rather specific). If you used them each
without the colons, you’d be defining a rule for all system
users, all users with the system role and all users with the
same access privileges as xserver_t, which would be a much
broader group of users.

Now that you have an idea of what a ‘context’ is, you could
apply your context to any object classes and grant it the
relevant permissions. SELinux provides myriad object classes

LXF130.tut_selinux 86 15/2/10 10:34:17 am

www.tuxradar.com April 2010 LXF130      87

SELinux Tutorial

 your own rules

For the more adventurous

For the benefit of those of you who 
want to get to the real nuts and bolts of 
how SELinux works or wish to write 
and compile their own security policies 
without the aid of GUI or command line 
tools, it’s useful to know how SELinux is 
arranged on the root partition.

All the global configuration files used 
and modified by supporting 
applications and utilities are available 
via /etc/selinux. The policy-specific 
files will be in the same folder, named 
accordingly, and with an accompanying 
modules folder where additional policy 
settings reside. You should also find 
these policy names in the /etc/
selinux/config file next to a line 
starting SELINUXTYPE=.

Kernel-specific SELinux modules 
and files are located under the /selinux 
directory and contain your current 
configuration and active security 
policies. Unless you’re absolutely sure 
of what you’re doing, it’s best to keep 
well away from this folder, because the 
consequences of doing something 
wrong are potentially disastrous. You 
could crash your system, or worse – 
lock yourself out of it!

Writing and compiling your own 
SELinux policies without tools is 
beyond the scope of this tutorial, but 
the Red Hat website covers the latter 
stage in a tutorial. But again, this is for 
advanced users, as the warnings on the 
site indicate: http://bit.ly/clXESW.

 You can either apply blanket SELinux policies across all your files, or create
your own special rules that will work in particular cases.

If you missed last issue Call 0870 837 4773 or +44 1858 438795.

(better described as a ‘category of objects’) for users,
processes and files. Examples of object classes would be dir
for directories and file for files.

Each of these objects then has a set of permissions that
you can enable or disable. For example, file would have
permissions to create, unlink (delete), read and write, while a
network object might have permissions to create a
connection or send data. You can see an exhaustive list of all
the available object classes and their associated permissions
at the SELinux project website at http://bit.ly/9idu42.

Applying rules
An example of allowing your object class permissions to two
different types of users would be:
allow user_t user_home_t:file { create read write unlink };

As you can see, you use allow to allow these particular types
of user to perform these actions on a file (the opposite would
be to change this command to deny).

You can apply similar rules to types, names or the
combination of the three that were discussed earlier in the
tutorial, meaning that you can allow or deny any aspect of
your system to any particular object, giving you maximum
say over how your computer works.

Now that you understand about rules, you may find that
there are times when the global system default of enforcing
doesn’t work for a particular situation. For example, you might
need to modify part of your system temporarily before
reverting to the SELinux default.

Rather than changing the global SELinux operating mode
and affecting your entire system, you could simply alter the
operating mode of a particular rule using semanage:
semanage permissive -a myapp_t

Try substituting myapp_t for any other object or context.
Then simply replace the a with a d to change the object in
question back to the system default.

Once you’ve finished manipulating SELinux to work the
way you want it to, you may find yourself needing to
troubleshoot a problem – or you might simply be curious to
know what SELinux policies will affect you in a particular
situation. This is particularly handy if you’re trying to transfer
a file or install a rogue package that SELinux is protecting you
from. There are two lines you can use in the terminal, and
both use the magic and case-sensitive -Z that you’ll see
mentioned on countless sites around the web:
ls -alZ *

This line will list every file in the current directory with its
associated ownership, permissions and SELinux rule (simply
substitute the * for a filename or path as necessary). You can
do something similar for the processes that are currently
running on your system with the following line:
ps -eZ > example.txt

This will list all running processes, along with their associated
SELinux rules, and then insert this information nicely into a

text file for your analysis. It’s possible to have all this data
displayed directly in your terminal window, but this is far less
useful because the results aren’t always particularly pretty
or easy for you to interpret.

And finally, if you need to check out what your currently
active system user’s associated SELinux policy is, simply
type id -Z into your terminal.

So, armed with a bit of patience and these instructions,
you can get on with your day-to-day tasks, safe in the
knowledge that your computer is well secured. LXF

LXF130.tut_selinux 87 15/2/10 10:34:18 am

