
“It’s more like the
Earth’s crust than
the network model.”

Yet this is exactly what can happen with the Linux
audio framework. There isn’t even a clearly defined bottom
level, with several audio technologies messing around with
the kernel and your hardware independently. Linux’s audio
architecture is more like the layers of the Earth’s crust
than the network model, with lower levels occasionally
erupting on to the surface, causing confusion and distress,
and upper layers moving to displace the underlying

technology that was originally
hidden. The Open Sound Protocol,
for example, used to be found at
the kernel level talking to your
hardware directly, but it’s now a
compatibility layer that sits on
top of ALSA. ALSA itself has a

kernel level stack and a higher API for programmers to
use, mixing drivers and hardware properties with the
ability to play back surround sound or an MP3 codec.
When most distributions stick PulseAudio and GStreamer
on top, you end up with a melting pot of instability with as
much potential for destruction as the San Andreas fault.

T
here’s a problem with the state of Linux audio,
and it’s not that it doesn’t always work. The
issue is that it’s overcomplicated. This soon
becomes evident if you sit down with a piece

of paper and try to draw the relationships between the
technologies involved with taking audio from a music file
to your speakers: the diagram soon turns into a plate of
knotted spaghetti. This is a failure because there’s
nothing intrinsically more
complicated about audio than
any other technology. It enters
your Linux box at one point and
leaves at another.

If we were drawing the OSI
model used to describe the
networking framework that connects your machine to
every other machine on the network, we’d find clear strata,
each with its own domain of processes and functionality.
There’s very little overlap in layers, and you certainly don’t
find end-user processes in layer seven messing with the
electrical impulses of the raw bitstreams in layer one.

Linux

uncoveredaudio
Graham Morrison digs 

into th
e centr

e of th
e Linux

 

kernel
 to unc

over w
hy sou

nd can
 be so.

.. unso
und.

Audio

52     LXF130 April 2010 www.linuxformat.com

Audio

LXF130.audio 52 12/2/10 5:34:12 pm

 This image
highlights
exactly what’s
wrong with Linux
audio. This is
the hideously
complicated
default view from
the ALSA mixer
for a typical
sound device.

“You can alter almost
anything about your
ALSA configuration.”

ALSA
INPUTS: PulseAudio, Jack, GStreamer, Xine,
SDL, ESD
OUTPUTS: Hardware, OSS

As Maria von Trapp said, “Let’s start at the very beginning.”
When it comes to modern Linux audio, the beginning is the
Advanced Linux Sound Architecture, or ALSA. This connects
to the Linux kernel and provides audio functionality to the rest
of the system. But it’s also far more ambitious than a normal
kernel driver; it can mix, provide compatibility with other
layers, create an API for programmers and work at such a low
and stable latency that it can compete with the ASIO and
CoreAudio equivalents on the Windows and OS X platforms.

ALSA was designed to replace OSS. However, OSS isn’t
really dead, thanks to a compatibility layer in ALSA designed
to enable older, OSS-only applications to run. It’s easiest to
think of ALSA as the device driver layer of the Linux sound
system. Your audio hardware needs a corresponding kernel
module, prefixed with snd_, and this needs to be loaded and
running for anything to happen. This is why you need an
ALSA kernel driver for any sound to be heard on your system,
and why your laptop was mute for so long before someone
thought of creating a driver for it. Fortunately, most distros
will configure your devices and modules automatically.

ALSA is responsible for translating your audio hardware’s
capabilities into a software API that the rest of your system
uses to manipulate sound. It was designed to tackle many
of the shortcomings of OSS (and most other sound drivers
at the time), the most notable of which was that only one
application could access the hardware at a time. This is why
a software component in ALSA needs to manages audio
requests and understand your hardware’s capabilities.

If you want to play a game while listening to music from
Amarok, for example, ALSA needs to be able to take both of
these audio streams and mix them together in software, or
use a hardware mixer on your soundcard to the same effect.
ALSA can also manage up to eight audio devices and
sometimes access the MIDI functionality on hardware,
although this depends on the specifications of your
hardware’s audio driver and is becoming less important as
computers get more powerful.

Where ALSA does differ from the typical kernel module/
device driver is in the way it’s partly user-configurable. This is
where the complexity in Linux audio starts to appear, because
you can alter almost anything about your ALSA configuration
by creating your own config file – from how streams of audio
are mixed together and which outputs they leave your system
from, to the sample rate, bit-depth and real-time effects.

ALSA’s relative transparency, efficiency and flexibility have
helped to make it the standard for Linux audio, and the layer
that almost every other audio framework has to go through in
order to communicate with the audio hardware.

PulseAudio
INPUTS: GStreamer, Xine, ALSA
OUTPUTS: ALSA, Jack, ESD, OSS
If you’re thinking that things are going to get

easier with ALSA safely behind us, you’re sadly mistaken.
ALSA covers most of the nuts and bolts of getting audio into
and out of your machine, but you must navigate another layer
of complexity. This is the domain of PulseAudio – an attempt
to bridge the gap between hardware and software capabilities,
local and remote machines, and the contents of audio
streams. It does for networked audio what ALSA does for

multiple soundcards, and has become something of a
standard across many Linux distros because of its flexibility.

As with ALSA, this flexibility brings complexity, but the
problem is compounded by PulseAudio because it’s more
user-facing. This means normal users are more likely to get
tangled in its web. Most distros keep its configuration at arm’s
length; with the latest release of Ubuntu, for example, you
might not even notice that PulseAudio is installed. If you click
on the mixer applet to adjust your soundcard’s audio level,
you get the ALSA panel, but what you’re really seeing is ALSA
going to PulseAudio, then back to ALSA – a virtual device.

At first glance, PulseAudio doesn’t appear to add anything
new to Linux audio, which is why it faces so much hostility. It
doesn’t simplify what we have already or make audio more
robust, but it does add several important features. It’s also the
catch-all layer for Linux audio applications, regardless of their
individual capabilities or the specification of your hardware.

If all applications used PulseAudio, things would be simple.
Developers wouldn’t need to worry about the complexities of
other systems, because PulseAudio brings cross-platform
compatibility. But this is
one of the main reasons
why there are so many
other audio solutions.
Unlike ALSA,
PulseAudio can run
on multiple operating
systems, including other
POSIX platforms and Microsoft Windows. This means that if
you build an application to use PulseAudio rather than ALSA,
porting that application to a different platform should be easy.

But there’s a symbiotic relationship between ALSA and
PulseAudio because, on Linux systems, the latter needs the
former to survive. PulseAudio configures itself as a virtual
device connected to ALSA, like any other piece of hardware.
This makes PulseAudio more like Jack, because it sits
between ALSA and the desktop, piping data back and forth
transparently. It also has its own terminology. Sinks, for
instance, are the final destination. These could be another
machine on the network or the audio outputs on your
soundcard courtesy of the virtual ALSA. The parts of
PulseAudio that fill these sinks are called ‘sources’ – typically
audio-generating applications on your system, audio inputs
from your soundcard, or a network audio stream being sent
from another PulseAudio machine.

Unlike Jack, applications aren’t directly responsible for
adding and removing sources, and you get a finer degree of

Audio Audio

www.tuxradar.com April 2010 LXF130     53

LXF130.audio 53 12/2/10 5:34:14 pm

 With Jack, you
can connect the
audio output
from applications
to the audio
input of others
manually – just
like in a real
recording studio.

 Here’s a
simplified view of
the audio layers
typically used in
Linux. The deeper
the layer, the
closer to the
hardware it is.

control over each stream. Using the PulseAudio mixer,
for example, you can adjust the relative volume of every
application passing through PulseAudio, regardless of
whether that application features its own slider or not. This
is a great way of curtailing noisy websites.

GStreamer
INPUTS: Phonon
OUTPUTS: ALSA, PulseAudio, Jack, ESD
With GStreamer, Linux audio starts to look even

more confusing. This is because, like PulseAudio, GStreamer
doesn’t seem to add anything new to the mix. It’s another
multimedia framework and gained a reasonable following of
developers in the years before PulseAudio, especially on the
Gnome desktop. It’s one of the few ways to install and use
proprietary codecs easily on the Linux desktop. It’s also the
audio framework of choice for GTK developers, and you can
even find a version handling audio on the Palm Pre.

GStreamer slots into the audio layers above PulseAudio
(which it uses for sound output on most distributions), but
below the application level. GStreamer is unique because it’s
not designed solely for audio – it supports several formats of
streaming media, including video, through the use of plugins.

MP3 playback, for example, is normally added to your
system through an additional codec download that attaches
itself as a GStreamer plugin. The commercial Fluendo MP3
decoder, one of the only officially licenced codecs available
for Linux, is supplied as a GStreamer plugin, as are its other
proprietary codecs, including MPEG-2, H.264 and MPEG.

Jack
INPUTS: PulseAudio, GStreamer, ALSA,
OUTPUTS: OSS, FFADO, ALSA
Despite the advantages of open configurations

such as PulseAudio, they all pipe audio between applications
with the assumption that it will proceed directly to the
outputs. Jack is the middle layer – the audio equivalent of
remote procedure calls in programming, enabling audio
applications to be built from a variety of components.

The best example is a virtual recording studio, where one
application is responsible for grabbing the audio data and
another for processing the audio with effects, before finally
sending the resulting stream through a mastering processor
to be readied for release. A real recording studio might use
a web of cables, sometimes known as jacks, to build these
connections. Jack does the same in software.

Jack is an acronym for ‘Jack Audio Connection Kit’. It’s
built to be low-latency, which means there’s no undue
processing performed on the audio that might impede its
progress. But for Jack to be useful, an audio application has
to be specifically designed to handle Jack connections. As a
result, it’s not a simple replacement for the likes of ALSA and
PulseAudio, and needs to be run on top of another system
that will generate the sound and provide the physical inputs.

With most Jack-compatible applications, you’re free to
route the audio and inputs in whichever way you please. You
could take the output from VLC, for example, and pipe it
directly into Audacity to record the stream as it plays back.
Or you could send it through JackRack, an application that
enables you to build a tower of real-time effects, including
pinging delays, cavernous reverb and voluptuous vocoding.

This versatility is fantastic for digital audio workstations.
Ardour uses Jack for internal and external connections, for
instance, and the Jamin mastering processor can only be
used as part of a chain of Jack processes. It’s the equivalent
of having full control over how your studio is wired. Its
implementation has been so successful on the Linux desktop
that you can find Jack being put to similar use on OS X.

FFADO
INPUTS: Jack
OUTPUTS: Audio hardware
In the world of professional and semi-

professional audio, many audio interfaces connect to their
host machine using a FireWire port. This approach has many
advantages. FireWire is fast and devices can be bus powered.
Many laptop and desktop machines have FireWire ports
without any further modification, and the standard is stable
and mostly mature. You can also take FireWire devices on the
road for remote recording with a laptop and plug them back
into your desktop machine when you get back to the studio.

But unlike USB, where there’s a standard for handling
audio without additional drivers, FireWire audio interfaces
need their own drivers. The complexities of the FireWire
protocol mean these can’t easily create an ALSA interface, so
they need their own layer. Originally, this work fell to a project
called FreeBOB. This took advantage of the fact that many
FireWire audio devices were based on the same hardware.

FFADO is the successor to FreeBOB, and opens the driver
platform to many other types of FireWire audio interface.
Version 2 was released at the end of 2009, and includes
support for many units from the likes of Alesis, Apogee, ART,
CME, Echo, Edirol, Focusrite, M-Audio, Mackie, Phonic and
Terratec. Which devices do and don’t work is rather random,

Hardware

ALSAFFADO

Jack

Phonon

Xine

GStreamer

PulseAudio

OSS

Audio

54     LXF130 April 2010 www.linuxformat.com

Audio

LXF130.audio 54 12/2/10 5:34:15 pm

 PulseAudio is
powerful, but
often derided for
making Linux
audio even more
complicated.

passes the audio to GStreamer, mostly for its transparent
codec support.

Phonon support is being quietly dropped from the Qt
framework. There have been many criticisms of the system,
the most common being that it’s too simplistic and offers
nothing new, although it’s likely that KDE will hold on to the
framework for the duration of the KDE 4 lifecycle.

The rest of the bunch
There are many other audio technologies, including ESD, SDL
and PortAudio. ESD is the Enlightenment Sound Daemon, and
for a long time it was the default sound server for the Gnome
desktop. Eventually,
Gnome was ported to
use libcanberra (which
itself talks to ALSA,
GStreamer, OSS and
PulseAudio) and ESD
was dropped
as a requirement in April 2009. Then there’s Arts, the KDE
equivalent of ESD, although it wasn’t as widely supported and
seemed to cause more problems than it solved. Most people
have now moved to KDE 4, so it’s no longer an issue.

SDL, on the other hand, is still thriving as the audio
output component in the SDL library, which is used to create
hundreds of cross-platform games. It supports plenty of
features, and is both mature and stable.

PortAudio is another cross-platform audio library that
adds SGI, Unix and Beos to the mix of possible destinations.
The most notable application to use PortAudio is the Audacity
audio editor, which may explain its sometimes unpredictable
sound output and the quality of its Jack support.

And then there’s OSS, the Open Sound System. It hasn’t
been a core Linux audio technology since version 2.4 of the
kernel, but there’s just no shaking it. This is partly because so
many older applications are dependent on it and, unlike
ALSA, it works on systems other than Linux. There’s even a
FreeBSD version. It was a good system for 1992, but ALSA is
nearly always recommended as a replacement.

OSS defined how audio would work on Linux, and in
particular, the way audio devices are accessed through the
ioctl tree, as with /dev/dsp, for example. ALSA features an
OSS compatibility layer to enable older applications to stick
to OSS without abandoning the current ALSA standard.

The OSS project has experimented with open source and
proprietary development, and is still being actively developed
as a commercial endeavour by 4 Front Technologies. Build
2002 of OSS 4.2 was released in November 2009. LXF

so you need to check before investing in one, but many of
these manufacturers have helped driver development by
providing devices for the developers to use and test.

Another neat feature in FFADO is that some the DSP
mixing features of the hardware have been integrated into
the driver, complete with a graphical mixer for controlling the
balance of the various inputs and outputs. This is different
to the ALSA mixer, because it means audio streams can be
controlled on the hardware with zero latency, which is exactly
what you need if you’re recording a live performance.

Unlike other audio layers, FFADO will only shuffle audio
between Jack and your audio hardware. There’s no back door
to PulseAudio or GStreamer, unless you run those against
Jack. This means you can’t use FFADO as a general audio
layer for music playback or movies unless you’re prepared to
mess around with installation and Jack. But it also means that
the driver isn’t overwhelmed by support for various different
protocols, especially because most serious audio applications
include Jack support by default. This makes it one of the best
choices for a studio environment.

Xine
INPUTS: Phonon
OUTPUTS: PulseAudio, ALSA, ESD
We’re starting to get into the niche geology of

Linux audio. Xine is a little like the chalk downs; it’s what’s left
after many other audio layers have been washed away. Most
users will recognise the name from the very capable DVD
movie and media player that most distributions still bundle,
despite its age, and this is the key to Xine’s longevity.

When Xine was created, the developers split it into a back-
end library to handle the media, and a front-end application
for user interaction. It’s the library that’s persisted, thanks
to its ability to play numerous containers, including AVI,
Matroska and Ogg, and dozens of the formats they contain,
such as AAC, Flac, MP3, Vorbis and WMA. It does this by
harnessing the powers of many other libraries. As a result,
Xine can act as a catch-all framework for developers who
want to offer the best range of file compatibility without
worrying about the legality of proprietary codecs and patents.

Xine can talk to ALSA and PulseAudio for its output, and
there are still many applications that can talk to Xine directly.
The most popular are the Gxine front-end and Totem, but
Xine is also the default back-end for KDE’s Phonon, so you
can find it locked to everything from Amarok to Kaffeine.

Phonon
INPUTS: Qt and KDE applications
OUTPUTS: GStreamer, Xine
Phonon was designed to make life easier for

developers and users by removing some of the system’s
increasing complexity. It started life as another level of audio
abstraction for KDE 4 applications, but it was considered
such a good idea that Qt developers made it their own, pulling
it directly into the Qt framework that KDE itself is based on.

This had great advantages for developers of cross-
platform applications. It made it possible to write a music
player on Linux with Qt and simply recompile it for OS X and
Windows without worrying about how the music would be
played back, the capabilities of the sound hardware being
used, or how the destination operating system would handle
audio. This was all done automatically by Qt and Phonon,
passing the audio to the CoreAudio API on OS X, for example,
or DirectSound on Windows. On the Linux platform (and
unlike the original KDE version of Phonon), Qt’s Phonon

“SDL supports plenty
of features, and is both
mature and stable.”

Audio Audio

www.tuxradar.com April 2010 LXF130     55

LXF130.audio 55 12/2/10 5:34:15 pm

