
Tutorial Android

92 LXF129 March 2010 www.linuxformat.com

Juliet Kemp
fell madly in love
with her G1
Android and now
gets withdrawal
symptoms when
parted from it for
longer than a few
minutes.

Our
expert
Our
expert

Open a new terminal window (or type source .bashrc) to
put this into effect. That’s all you need to do: the environment
is now ready to use. We’ll set up the testbed and your
emulated phone later on: first, let’s generate an empty project
so we’ve got somewhere to put our code once we start editing
it. Create a working directory for your Android code and cd
into it, then use the android tool to generate the new project:
mkdir ~/android/

cd ~/android

android create project --package com.example.list --activity

List \\

 --target 2 --path ~/android/List

The --package option identifies the namespace for your
new package. These follow the same rules as Java package
namespaces. The basic rule is that you take your own internet
domain name (or that of your organisation) and reverse this,
component by component, to generate the package name.
So if you have the myname.com domain, you can use com.
myname.list. (If you don’t have a domain, one option is to
use local.myname.list, but this risks namespace collisions.)

The --activity argument sets the name of your main
Activity class (I’ll talk in more depth about Activities next
month; for now, you just need to know that it’s the name of
the main class of your project). --target is the library that
you’re building against. 2 is the standard 1.5 library: use

Android: Run w

Android Code software for Google’s
open source phone platform

The first step is to download the Android SDK. There are
basically two ways of going about your Android development:
you can use Eclipse (the Java development platform) with an
Android plugin, which will do a certain amount of work for
you; or you can do it all yourself, which is still fairly
straightforward. Here we’ll tackle the non-Eclipse setup, partly
to give you more control over exactly what’s going on, and
partly because Eclipse can be unusably slow on older
machines (including my own desktop!).

Note that you’ll need version 1.6 of Java to work with the
most recent version of Android: this is available as the
openjdk-6-jdk for Debian/Ubuntu. You may also need to run
sudo update-alternatives --config java to set the correct
version of Java to use.

The Android SDK is available from the Android developer
site (http://developer.android.com/index.html): at the
time of writing the current version was 1.5 rev 3. Download,
unzip, and put it wherever you want to: for example, /usr/
local/android-sdk-linux_x86-1.5_r2/. Check that the
permissions are correct and that your user is in the correct
group. After that, the only setup you need is to edit your .
bashrc or .bash_profile to include the tools/ directory in
your $PATH:
export PATH=${PATH}:/usr/local/android-sdk-linux_x86-1.5_

r2/tools/

Android is an open-source OS for smartphones, which makes it easy to write
and publish software for it, as Juliet Kemp will now demonstrate.

Part 1 Setting up your dev environment

T
he Nexus 1 phone that we reported on in this issue’s
news pages (see p6) is the only one of the current
generation of smartphones that runs an an open-

source operating system: Google’s newly-developed Android.
Android runs on a Linux kernel, with a bunch of Google-
developed Java libraries sitting between that and the
software. The open source development model means that
it’s straightforward to start developing and releasing your own
software for the Nexus 1 or G1, written in Java and making use
of the Android-specific libraries as well as standard Java
libraries. Even if you don’t have your own Android-running
device, the dev tools are all available for free online, including
a phone emulator to test your software on. (Although it is of
course recommended that you test your software on a real
device you release it into the wild.)

In this two-part series I’ll take you through the steps
involved in setting up your development environment, writing
a very basic list-making application and then releasing it to
the public. This month we’ll look at the dev and test setup,
and get the first version of the application working. So turn
make a cup of tea, set your phone to silent mode and
prepare to enter the not-at-all Blade Runner-esque world of
Android development.

LXF129.tut_android 92 19/1/10 4:21:54 pm

Android Tutorial

www.tuxradar.com March 2010 LXF129 93

If you missed last issue Call 0870 837 4773 or +44 1858 438795.

Android list targets to see what’s available. --path is the
project directory, which will be created for you if necessary.

Now type cd ~/android/List and have a quick look at the
directory structure. Your source code is in src/local/
myname/list/; the other important directory is res/, where
package resources live. AndroidManifest.xml is the
application manifest, which contains all the information about
the application required by the Android system. It sets up the
component structure of the application, declares appropriate
provisions, declares the required libraries and specifies the

minimum API that the software needs. (For more information
on this file, check out the Developer docs.) The other useful
file is build.xml, the build file for Ant, the build tool. You
shouldn’t need to touch either of these two files by hand.

So far there’s no code in here that actually does anything.
But the project setup generates class stubs for you, so we
can compile it anyway. From the top directory, run:
ant debug

Check out bin/: there’s now a file in there called List-
debug.apk. You could install that on to the test emulator,
except that we haven’t set that up yet ,and anyway it won’t do
anything. The debug build target is used while you’re
developing; next month we’ll look at what to do when you
want to generate a real program.

 with the robots

Part 2 List.java

Developing with Eclipse
To use Eclipse, you’ll still have to
download the SDK, note where you put
it, and set up your $PATH correctly.

You’ll need at least version 3.3 of
Eclipse, so you’ll have to install from the
Eclipse website). Once you have Eclipse
up and running, go to Help > Install
Software and type https://dl-ssl.
google.com/eclipse/android into the

Work With box (try http:// if you have
trouble with https://).

Select the checkbox next to
Developer Tools under the Android
plugin, then choose Install. On the next
window, make sure that both the DDMS
and the dev tools are due to be
installed, then click Next, accept the
licence agreement, and click Finish.

We’re going to write a basic list-making application with a
simple database back-end, where you can add an item to a
list (and later delete it). First of all, let’s set up the main class
(List.java). This is what will be run when someone starts the
app up, and at the moment all it will do is show a view of the
existing list (so it needs to grab any existing items from the
database), and create a menu option to add an item.

List extends ListActivity – this is an Android class that
deals with displaying a list of items and managing various
event handlers to react when the user selects or clicks on an
item. An Activity is basically a class that deals with ‘something
that the user does’ within your application. (So an application
can have multiple Activities, although ours won’t just yet!)

There are a couple of private variables and objects set up
at the top of the class which we’ll need later. The onCreate
method is the method that runs when the class is created (ie
when the app starts):
 @Override

 public void onCreate(Bundle savedInstanceState)

 {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.main);

 mDb = new ListDbAdapter(this);

 mDb.open();

 getData();

 registerForContextMenu(getListView());

 }

The @Override line is there because this overrides an
inherited method. We’ll look at the layout set with R.layout.
main later. The rest of the method deals with setting up the
interaction with the database, grabbing the data out of it, and
registering for a context menu (the type of menu that shows
up when you long-click on an item, which is the Android
equivalent of right-clicking). registerForContextMenu is
inherited from ListActivity.

The next thing is to write the getData() method, which will
grab the data from the database:
 private void getData() {

 mCursor = mDb.fetchAllItems();

 startManagingCursor(mCursor);

 String[] cols = new String[]{

ListDbAdapter.DB_ITEM };

 int[] views = new int[]{ R.id.text1 };

 SimpleCursorAdapter row_cursor =

 The Android emulator ready for action – there’s a
keyboard to the right of the pretend device, and it’ll
respond to mouse movements.

If you’re running on
a slow computer
you may find
that the 1.5
version of the test
environment is very
slow. You can set
up a 1.1 AVD using
-t 1 and use that for
initial testing.

Quick
tip

LXF129.tut_android 93 19/1/10 4:21:55 pm

Tutorial Android

94 LXF129 March 2010 www.linuxformat.com

 Here’s DDMS in
action. Check out
the grey!

 new

SimpleCursorAdapter(this, R.layout.list_row, mCursor, cols,

 views);

 setListAdapter(row_cursor);

 }

mCursor is one of our pre-established private objects: a
Cursor allows access to objects returned by a database query
(ie a database query returns a Cursor item – we’ll look at the
database methods later when we write our database
interface class). startManagingCursor is another method
inherited from ListActivity, which will let Android do the
Cursor lifecycle management work for us.

The next line sets up a String array for our columns: in this
case, we only have one, which is the DB_ITEM column from
our database class (see below to write this!). The line after
that sets up an int array to match the String array: each entry
in the int array defines the View to which the corresponding
column in the String array should be bound. Here, the DB_
ITEM column is bound to the R.id.text1 View. (Look for more
about Views in the second part of this series. For now, the
short version is that they’re a way to manage an area of the
screen.) The SimpleCursorAdapter sets up the layout for
the rows (the R.layout.list_row layout), and links the cols
String array and the views int array. setListAdapter ties this
to the list view.

Next we create three menu methods. The first one adds
items to the menu:
 public boolean onCreateOptionsMenu(Menu menu)

{

 super.onCreateOptionsMenu(menu);

 menu.add(NONE, ADD_ID, NONE,

R.string.menu_add);

 return true;

}

We only have one menu option: its label is defined with
R.string.menu_add (we’ll set that up in a moment!), and its
positioning is defined by ADD_ID (which was set up top of the
class to equal the Menu.FIRST constant, so it’ll be the first
option in the menu). The first NONE means that the item
should not be in a group, and the second NONE means that
we don’t care about order.

Next we need to deal with what happens when the user
clicks that menu item:
 public boolean onMenuItemSelected(int id,

MenuItem item) {

 switch(item.getItemId()) {

 case ADD_ID:

 createItem();

 return true;

 }

 return super.onMenuItemSelected(id,

item);

 }

The switch statement handles things depending on the ID of
the menu option selected. Here we only have one, so it’s
pretty easy!

Finally, we need the method that creates the new item (ie,
adds it to the database):
 private void createItem() {

 /*later we’ll need to actually get a way of

getting data into this!*/

 mDb.createItem(getString(R.string.new_

item));

 getData();

 }

We’re going to leave the more complicated bit of handling
user input until the second article in this series: for now, all we
do is add an entry to the database that contains the text
stored in the R.string.new_item resource (see below). Then
we grab all the data from the database again to redraw the
screen, so that the new item will appear as soon as it’s added.

Now let’s take a look at those R strings and layouts that
we’ve made references to.

Strings and things
If you take a look at your List/ dev directory, there’s a
subdirectory there called res/. This is where you keep all your
resources. Resources are what Android calls pretty much
anything external to the code that you want to reference:
images, layouts, string data and that sort of thing.

In this project so far we only have a layout and a couple of
strings to worry about. The layout will be kept in res/layout/,
and the string data is in res/values/strings.xml. You want to
edit this file so it looks like this:
<?xml version=”1.0” encoding=”utf-8”?>

<resources>

 <string name=”app_name”>List</string>

 <string name=”menu_add”>Add item</string>

 <string name=”new_item”>New item</string>

</resources>

As you can see, it’s an XML file with a pretty
straightforward format. We’ve set the application name and
two strings that are used in the List.java file. These are
referred to as R.string.menu_add and R.string.new_item,
and you’ve already seen all of them used in the code above.
It’s good practice to put all your constant strings in this file:
it’s more efficient, it makes life simpler if you ever want to
change anything, and when in due course Android supports
internationalisation and localisation, you’ll be in a better
position to set your app up to use that.

The other sort of resource we’ve used so far is a layout
resource. The main layout is in res/layout/main.xml, which
should look like this:
<?xml version=”1.0” encoding=”utf-8”?>

<LinearLayout xmlns:android=”http://schemas.android.com/

apk/res/android”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content”>

 <ListView android:id=”@+id/android:list”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content” />

<TextView android:id=”@+id/android.empty”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content”

 android:text=”No items in this list”

 />

</LinearLayout>

Resources are
returned as a
CharSequence: if
you need to be sure
that you’regetting
a string, use
the getString()
method as shown
in createItem().
You may not always
need this, but it’s
useful if you get a
resource-related
compile error.

Quick
tip

LXF129.tut_android 94 19/1/10 4:21:55 pm

Android Tutorial

www.tuxradar.com March 2010 LXF129 95

You may notice that we’ve got a fixed string in there.
Better practice would be to replace that line with this one:
 android:text=”@string/empty_list”

The @ identifies this as a reference, and because it’s in this
package you don’t need to specify anything other than that
it’s a string, and the name of the string. Now add an
appropriate line to res/values/strings.xml:
 <string name=”empty_list”>No items in this list</string>

and you’ve correctly externalised your string! The other file
we’ve referred to in our code is res/layout/list_row.xml:
<?xml version=”1.0” encoding=”utf-8”?>

<TextView android:id=”@+id/text1” xmlns:android=”http://

schemas.android.com/apk/res/android”

 android:layout_width=”wrap_content”

 android:layout_height=”wrap_content”

/>

That text1 field is used in the getData method:
 int[] fields = new int[]{ R.id.text1 };

where it was used to link that view (R.id.text1, which here is
set up as a TextView with wrapping widthwise and
heightwise) to a particular column. So what we’ve done is
said: for that column, we use this view, but we’ve defined the
view in the resources section rather than in the code. This is a
bit like putting your HTML visual setup in CSS: it makes it
easier to modify the layout if you choose, and it makes it
easier to give your app a visual identity.

Next month We’ll examine more details of the Android application model.

The code for the database is in ListDbAdapter. The start of
this file sets up various constants and private objects,
including a string that will create a database with two fields:
an integer key field and a text item field:
 private static final String DB_CREATE =

 “create table list (_id integer primary key autoincrement, “

 + “item text not null);”;

We also set up a private DatabaseHelper class, which
inherits from the android.database.sqlite.
SQLiteOpenHelper class. This will do the actual interacting
with the database for us, and uses that DB_CREATE string.
There’s also a method in there to deal with upgrades.

When creating the ListDbAdapter, all we need is the
Context: this is a class provided by the Android system that
acts as an interface to information about the application
environment. We also set up open and close methods, which
do what you’d expect.

The createItem method is the next interesting one:
 public long createItem(String item) {

 ContentValues content = new ContentValues();

 content.put(DB_ITEM, item);

 return mDb.insert(DB_TABLE, null, content);

 }

ContentValues is effectively a hash implementation: the
item value is stored with DB_ITEM as a key and then the
DatabaseHelper mDb uses the hash when interacting with
the database and add the given content. There’s a delete
method as well, and a method to return all items
(fetchAllItems).

OK, so now let’s set up our test environment. The first
thing to do is to generate an Android Virtual Device (AVD):
this is the pretend phone that the emulator will run. You can
generate multiple AVDs, so you can create different phone
setups and have their data independently maintained.
Anything you save to an AVD when the emulator is running
will survive between emulator runs. For a basic test phone
running the current version of Android, use:
android create avd -n my_avd_1.5 -t 2

The targets are the same as when you were generating
the project: start off testing against the same target that you
built the project for, although later you may wish to generate
different AVDs to different targets to see if your software is
backwards and/or forwards compatible. You’re asked if you
want to set any hardware options; say no to get the defaults.
The AVD will be saved to ~/.android/avd.

Part 3 Setting up your database & testing

Next, start up the emulator:
emulator -avd my_avd_1.5

Finally, install your software on the device:
adb install ~/android/List/bin/List-debug.apk

Once that command has run, click on the tab at the bottom
of the phone screen and scroll down the menu that appears
until you find the List item. Click on that and it should run.

If you make a change to the code, recompile it and want to
reinstall it, you need to use the -r switch to android install:
adb install -r ~/android/List/bin/List-debug.apk

The app will remain installed if you shut the emulator
down and start it up again with the same AVD: all the existing
information is stored as part of the AVD on shutdown.

Debugging
On this occasion your code should run perfectly, but sadly
that isn’t always the case. The Android emulator won’t give
you much information: you need to run the debugger, DDMS.
This will automatically connect itself to the running emulator,
and there’s a logging window at the bottom of the screen that
you can use to check stack traces and exceptions. To output
something to the log from your app, use this syntax:
import android.util.Log;

private static final String TAG = “List”;

Log.i(TAG, “List.getData() - about to talk to database”);

Log.w(TAG, “List.getData() - oh dear, something has gone

wrong”);

Use the TAG string as a label for which activity you’re
logging from (here, the List activity; you could also log from
the ListDbAdapter class and use that as a tag). Use Log.d
for debug, Log.i for information, Log.e for error and Log.w
for warning. LXF

Resources
The main resource is the developers’
guide and documentation that comes
with the Android SDK. There’s a lot of
useful information in here, and some
sample code: I found it incredibly
helpful when getting started with
Android coding.

There are also a couple of lists on
Google Groups (android-beginners,

android-developers, and android-
discuss): check the description of each
before you post to make sure you’re in
the appropriate forum for your question.

If you use IRC, check out the
#android channel on the irc.freenode.
net server. There are also various
Android forums which each have their
own developer boards.

The docs claim that
you need to run
logcat from DDMS
to see the logs,
but in fact this just
gives you a second
log window (which
doesn’t have the
useful colours in
the one on the main
screen) showing
the same info.

Quick
tip

LXF129.tut_android 95 19/1/10 4:21:56 pm

