
Kernel patching

56 LXF129 March 2010 www.linuxformat.com

rules in order for it to be a viable
project that a large number of

developers can work on. The goal of
any Linux kernel developer is to have

other developers help find problems in
their code, and by keeping all of the code

in the same format it makes it much easier for
anyone else to pick it up, modify it, or notice bugs in it. As
every line of kernel code is reviewed by at least two
developers before it is accepted, it’s important to have a
common style guideline.

The Linux kernel coding style can be found in the file
Documentation/CodingStyle in the kernel source tree. The
important thing to remember when reading it is not that this
style is somehow better than any other style, just that it is
consistent. In order to help developers easily find coding style
issues, the script scripts/checkpatch.pl in the kernel source
tree has been developed. This script can point out problems
easily, and should always be run by a developer on their
changes, instead of having a reviewer waste their time by
pointing out problems later on.

The drivers in the drivers/staging/ directory all usually
have coding style issues, as they were developed by people
not familiar with the Linux kernel guidelines. One of the first
things that need to be done to the code is to fix it up to follow
the correct rules. And this is where you come in: by running
the checkpatch.pl tool, you can find a large number of
problems that need to be fixed.

Specific rules
Let’s have a look at some of the common rules that are part
of the kernel guidelines.
Whitespace
The first rule that everyone needs to follow is to use the Tab
character rather than spaces, to indent code. Also, the Tab
character should represent eight spaces. Following along with
the eight-character Tab indentation, the code should not flow
past the 80 character line limit on the right of the screen.

Numerous developers have complained about the 80
character limit recently, and there are some places where it is
acceptable to go beyond that limit. If you find that you’re
being forced to do strange line-wrapping formatting just to fit

YOUR KERNEL NEEDS

YOU
Lord Kernel Greg Kroah-Hartman
wants you for his Linux army.
Now here’s your basic training…

Y
ou don’t need a PhD in computer
science and years of experience to
hack the kernel. Sure, they help, but
the nature of Linux development

means that it’s open to all by default. All you
have to do is get stuck in. You use the Linux
kernel in whatever shape or form every day;
wouldn’t you feel just the tiniest swell of pride if
you’d helped work on it, no matter in how small a way?

But what if everything works just fine for you, and there’s
nothing that you’d like to fix? Well, don’t despair, the Linux
kernel developers need all the help they can get, and have
plenty of code in the tree that’s just waiting to get cleaned up.
One example is the code in the drivers/staging/ tree, which
consists of a lot of drivers that do not meet the normal Linux
kernel coding guidelines. The code is in that location so that
other developers can help on cleaning it up before it and gets
merged into the main portion of the Linux kernel tree.

Every driver in the drivers/staging directory contains a
TODO listing the things that need to be done on it in order for
the code to be moved to the proper location in the kernel tree.
Most of the drivers all have the following line in their TODO file:
- fix checkpatch.pl issues

Let’s look into what this means and what you can do.
Every large body of code needs to have a set of coding style

From tiny acorns…
One of the best tutorials for running Git
comes within Git itself. You can read it
and can be read by running:
$ man gittutorial

after you have installed Git on your box.
So run off and install Git on your

Linux system using the package
manager you are comfortable with,
then start by cloning the main Linux
kernel repository:
$ mkdir ~/linux

$ cd ~/linux

$ git clone git://git.kernel.org/pub/scm/

linux/kernel/git/torvalds/linux-2.6.git

This will create the directory linux-
2.6 within the linux/ directory.

Everything we do from here out will
be within that directory, so go into it to
start with:
$ cd ~/linux/linux-2.6

Now that you have the raw source
code, how do you build it and install it
on your system? That is a much larger
task, one that is beyond this article.
Luckily a whole book has been written
on this topic: Linux Kernel in a Nutshell,
and can be found free online at:
www.kroah.com/lkn/.

LXF129.kernel 56 19/1/10 6:51:0 pm

Kernel patching

www.tuxradar.com March 2010 LXF129 57

into the 80-character limit with all of your code on the right-
hand side of the screen, it is better to refactor the logic to
prevent this from happening in the first place.

Forcing an 80-character limit also forces developers to
break their logic up into smaller, easier to understand chunks,
which makes it easier to review and follow as well. So yes,
there is a method to the madness of the 80 character limit.

checkpatch.pl
With these simple whitespace and brace rules now
understood, let’s run the checkpatch.pl script on some code
and see what it tells us:
$./scripts/checkpatch.pl --help

Usage: checkpatch.pl [OPTION]... [FILE]...

Version: 0.30

Options:

-q, --quiet quiet

--no-tree run without a kernel tree

--no-signoff do not check for ‘Signed-off-by’ line

--patch treat FILE as patchfile (default)

--emacs emacs compile window format

--terse one line per report

-f, --file treat FILE as regular source file

--subjective, --strict enable more subjective tests

--root=PATH PATH to the kernel tree root

--no-summary suppress the per-file summary

--mailback only produce a report in case of

warnings/errors

--summary-file include the filename in summary

--debug KEY=[0|1] turn on/off debugging of KEY, where

KEY is one of ‘values’, ‘possible’, ‘type’, and ‘attr’ (default is

all off)

--test-only=WORD report only warnings/errors containing

WORD literally

-h, --help, --version display this help and exit When FILE is -

read standard input.

Two common options that we will be using are the --terse
and --file options, as those enable us to see the problems in a
much simpler report, and they work on an entire file, not just
a single patch.

So, let’s pick a file in the kernel and see what running
checkpatch.pl tells us about it:
$./scripts/checkpatch.pl --file --terse drivers/staging/comedi/

drivers/ni_labpc.c drivers/staging/comedi/drivers/ni_

labpc.c:4: WARNING: line over 80 characters

...

drivers/staging/comedi/drivers/ni_labpc.c:486: WARNING:

braces {} are not necessary for single statement blocks

...

drivers/staging/comedi/drivers/ni_labpc.c:489: WARNING:

braces {} are not necessary for single statement blocks

...

drivers/staging/comedi/drivers/ni_labpc.c:587: WARNING:

suspect code indent for conditional statements (8, 0)

...

drivers/staging/comedi/drivers/ni_labpc.c:743: WARNING:

printk() should include KERN_ facility level

drivers/staging/comedi/drivers/ni_labpc.c:750: WARNING:

kfree(NULL) is safe this check is probably not required

...

drivers/staging/comedi/drivers/ni_labpc.c:2028: WARNING:

EXPORT_SYMBOL(foo); should immediately follow its

function/variable

total: 0 errors, 76 warnings, 2028 lines checked

I’ve removed a lot of the warnings from the above output, as
there was a total of 76 of them and they were all variants of
the ones above.

As can be seen, the checkpatch.pl tool points out where
the code has gone beyond the 80-character limit, and where
braces were used that were not needed, as well as a few other
things that should be cleaned up in the file.

Now that we know what needs to be done, fire up your
favourite editor and let’s fix something. How about the brace
warning, (see box on page 58) – that should be simple to
resolve. Looking at the original code, lines 486–490 look like
the following:
 if (irq) {

 printk(“, irq %u”, irq);

 }

 if (dma_chan) {

 printk(“, dma %u”, dma_chan);

 }

A simple removal of those extra braces results in:
 if (irq)

 printk(“, irq %u”, irq);

 if (dma_chan)

 printk(“, dma %u”, dma_chan);

Save the file and run the checkpatch tool again to verify
that the warning is gone:
$./scripts/checkpatch.pl --file --terse drivers/staging/comedi/

drivers/ni_labpc.c | grep 486

$

And of course you should build the file to verify that you
did not break anything:
$ make drivers/staging/comedi/drivers/ni_labpc.o

 CHK include/linux/version.h

 CHK include/generated/utsrelease.h

 CALL scripts/checksyscalls.sh

 CC [M] drivers/staging/comedi/drivers/ni_labpc.o

Great, you’ve now made your first kernel code fix! But how
do you take this change and get it to the kernel developers in
the format that they can apply?

More git fun
As you edited this file within a Git repository, your change to it
is caught by Git. This can be seen by running git status:
$ git status

On branch tutorial

Changed but not updated:

(use “git add <file>...” to update what will be committed)

(use “git checkout -- <file>...” to discard changes in

working directory)

#

About Git
Probably the most important thing to
remember when you’re working with
Git is never to do your work on the
same branch that Linus pushes to,
called ‘master’. You should create your
own branch, and use that instead. This
ensures that you will be able to update
any changes that are committed to
Linus’s branch upstream without any
problems. To create a new branch
called ‘tutorial’ and check it out, do
the following:

$ git branch tutorial

$ git checkout tutorial

That’s it. You are now in the ‘tutorial’
branch of your kernel repository, as can
be seen by the following command:
$ git branch

 master

 * tutorial

The * in front of the ‘tutorial’ name
shows that you are on the correct
branch. Now, let’s go and make some
changes to the kernel code!

LXF129.kernel 57 19/1/10 6:51:19 pm

Kernel patching

58 LXF129 March 2010 www.linuxformat.com

modified: drivers/staging/comedi/drivers/ni_labpc.c

#

no changes added to commit (use git add and/or git
commit -a).

This output shows that we are on the branch called
‘tutorial’, and that we have one file modified at the moment,
the ni_labpc.c file. If we ask Git to show what we changed, we
will see the actual lines:
$ git diff

diff --git a/drivers/staging/comedi/drivers/ni_labpc.c b/

drivers/staging/comedi/drivers/ni_labpc.c

index dc3f398..a01e35d 100644

--- a/drivers/staging/comedi/drivers/ni_labpc.c

+++ b/drivers/staging/comedi/drivers/ni_labpc.c

@@ -483,12 +483,10 @@ int labpc_common_attach(struct

comedi_device *dev, unsigned long iobase,

 printk(“comedi%d: ni_labpc: %s, io 0x%lx”, dev->minor,

thisboard->name,

 iobase);

- if (irq) {

+ if (irq)

 printk(“, irq %u”, irq);

- }

- if (dma_chan) {

+ if (dma_chan)

 printk(“, dma %u”, dma_chan);

- }

 printk(“\n”);

 if (iobase == 0) {

This output is in the format that the patch tool can use to
apply a change to a body of code. The leading - and + on
some lines show what lines are removed, and what lines are
added. Reading these diff outputs soon becomes natural, and
is the format in which you need to send your changes to the
kernel maintainer to get the change accepted.

Description, description, description
The raw diff output shows what code has been changed, but
for every kernel patch, more information needs to be
provided in order for it to be accepted. This metadata is as
important as the code changes, as it is used to show who
made the change, why the change was made, and who
reviewed the change.

Here’s a sample change that was accepted into the Linux
kernel tree a while ago:
USB: otg: Fix bug on remove path without transceiver

In the case where a gadget driver is removed while no

transceiver was found at probe time, a bug in otg_put_

transceiver() will trigger.

Signed-off-by: Robert Jarzmik <robert.jarzmik@free.fr>

Acked-by: David Brownell <dbrownell@users.sourceforge.

net>

Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>

--- a/drivers/usb/otg/otg.c

+++ b/drivers/usb/otg/otg.c

@@ -43,7 +43,8 @@ EXPORT_SYMBOL(otg_get_

transceiver);

 void otg_put_transceiver(struct otg_transceiver *x)

 {

- put_device(x->dev);

+ if (x)

+ put_device(x->dev);

 }

The first line of the change is a one-line summary of what
part of the kernel the change is for, and very briefly, explains
what it does:
USB: otg: Fix bug on remove path without tranceiver

Then comes a more descriptive paragraph that explains
why the change is needed:
In the case where a gadget driver is removed while no

transceiver was found at probe time, a bug in otg_put_

transceiver() will trigger.

After that, come a few lines that show who made and
reviewed the patch:
Signed-off-by: Robert Jarzmik <robert.jarzmik@free.fr>

Acked-by: David Brownell <dbrownell@users.sourceforge.

net>

Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>

The term ‘Signed-off-by:’ refers to the ability for the
developer to properly claim that they are allowed to make this
change, and offer it up under the acceptable licence to be
able for it to be added to the Linux kernel source tree. This
agreement is called the Developer’s Certificate of Origin, and
can be found in full in the file, Documentation/
SubmittingPatches in the Linux kernel source tree.

In brief, the Developer’s Certificate of Origin consists of
the following:
1 I created this change; or
2 Based this on a previous work with a compatible licence;

or
3 Provided to me by (1), (2), or (3) and not modified
4 This contribution is public.

It is a very simple to understand agreement, and ensures
that everyone involved knows that the change is legally
acceptable. Every developer who the patch goes through,
adds their ‘Signed-off-by:’ to it as the patch flows through the
developer and maintainer chain before it is accepted into the
Linux kernel source tree. This ensures that every line of code
in the Linux kernel can be tracked back to the developer who
created it and the developers who reviewed it.

Now we know how a patch is structured, we can create
ours. First, tell Git to check in the change that we made:
$ git commit drivers/staging/comedi/drivers/ni_labpc.c

Git will fire up your favorite editor and place you in it, with the
following information already present:
Please enter the commit message for your changes. Lines

starting with ‘#’ will be ignored, and an empty message

aborts the commit.

Braces
The rules regarding brace usage in the
kernel are slightly fiddly. Opening braces
should be placed on the same line of the
statement they are being used for, with
one exception, as shown below. Closing
braces should be placed back at the
original indentation. This can be shown
with the following example:
if (error != -ENODEV) {

 foo();

 bar();

}

If you need to add an else statement
to an if statement you should put it on
the same line as the closing brace, as
shown here:
if (error != -ENODEV) {

 foo();

 bar();

} else {

report_error();

goto exit;

}

If braces are not needed for a
statement, do not put them in, as they
are unnecessary:
if (error != -ENODEV)

 foo();

else

goto exit;

The one exception for opening
braces is for function declarations,
those go on a new line, like so:
int function(int *baz)

{

 do_something(baz);

 return 0;

}

LXF129.kernel 58 19/1/10 6:51:47 pm

Kernel patching

www.tuxradar.com March 2010 LXF129 59

Explicit paths specified without -i nor -o; assuming --only

paths...

On branch tutorial

Changes to be committed:

(use “git reset HEAD <file>...” to unstage)

#

modified: drivers/staging/comedi/drivers/ni_labpc.c

Create a summary line for the patch:
Staging: comedi: fix brace coding style issue in ni_labpc.c

And then a more descriptive paragraph:
This is a patch to the ni_labpc.c file that fixes up a brace

warning found by the checkpatch.pl tool

Then add your Signed-off-by: line:
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>

Then save the file and Git will make the commit, printing
out the following:
[tutorial 60de825] Staging: comedi: fix brace coding style

issue in ni_labpc.c

1 files changed, 2 insertions(+), 4 deletions(-)

If you use the command git show HEAD to see the most
recent change, it will show you the full commit you made:
$ git show HEAD

commit 60de825964d99dee56108ce4c985a7cfc984e402

Author: Greg Kroah-Hartman <gregkh@suse.de>

Date: Sat Jan 9 12:07:40 2010 -0800

 Staging: comedi: fix brace coding style issue in ni_labpc.c

 This is a patch to the ni_labpc.c file that fixes up a brace

warning found by the checkpatch.pl tool

Signed-off-by: My Name <my_name@my_email_domain>

diff --git a/drivers/staging/comedi/drivers/ni_labpc.c b/

drivers/staging/comedi/drivers/ni_labpc.c

index dc3f398..a01e35d 100644

--- a/drivers/staging/comedi/drivers/ni_labpc.c

+++ b/drivers/staging/comedi/drivers/ni_labpc.c

@@ -483,12 +483,10 @@ int labpc_common_attach(struct

comedi_device *dev, unsigned long iobase,

printk(“comedi%d: ni_labpc: %s, io 0x%lx”, dev->minor,

thisboard->name,

 iobase);

- if (irq) {

+ if (irq)

printk(“, irq %u”, irq);

- }

- if (dma_chan) {

+ if (dma_chan)

printk(“, dma %u”, dma_chan);

- }

printk(“\n”);

if (iobase == 0) {

You have now created your first kernel patch!

Get your change into the kernel tree
Now that you have created the patch, how do you get it into
the kernel tree? Linux kernel development primarily still
happens through email, with patches and review both
happening that way.

First off, let’s export our patch in a format that we can use
to email it to the maintainer who will be responsible for
accepting our patch. To do that, once again, Git has a
command, format-patch, that you can use:
$ git format-patch master..tutorial

0001-Staging-comedi-fix-brace-coding-style-issue-in-ni_

la.patch

In this command we’re creating all patches that exist in
the difference from the ‘master’ branch (which is Linus’s

branch, remember way back at the beginning?) and our
private branch, called ‘tutorial’.

This consists of only one change, our patch. It is now in the
file 0001-Staging-comedi-fix-brace-coding-style-issue-in-
ni_la.patch in our directory in a format that we can send off.

Before we attempt to send the patch off, we should verify
that our patch is in the correct format, and does not add any
errors to the kernel tree as far as coding style issues go. To do
that, we use the checkpatch.pl script again:
$./scripts/checkpatch.pl 0001-Staging-comedi-fix-brace-

coding-style-issue-in-ni_la.patch

total: 0 errors, 0 warnings, 14 lines checked

0001-Staging-comedi-fix-brace-coding-style-issue-in-ni_

la.patch has no obvious style problems and is ready for

submission.

All’s well…
… but who do we send it to? Once again, the kernel
developers have made this very simple with a script that
will tell you who needs to be notified. This script is called,
get_maintainer.pl, and is also in the scripts/ subdirectory in
the kernel source tree. This script looks at the files you have
modified in the patch and matches it up with the information
in the MAINTAINERS file in the kernel source tree that
describes who is responsible for what portion of the kernel, as
well as looking at the past history of the files being modified.
From this it magically generates a list of people who need to
be notified about the patch, complete with email addresses.

So, we should just bring up our favourite email client and
send the patch off to all addresses that get_maintainer.pl
told us about, right? Not so fast! Almost all common email
clients do nasty things with patch files, wrapping lines when
they shouldn’t be wrapped, changing tabs into spaces, eating
spaces when they shouldn’t and all sorts of other nasty things.

For details about all of these common problems, and how
to properly configure a large number of email clients, take a
look at the file, Documentation/email-clients.txt in the
kernel source tree. It will help you out if you want to use your
normal email client to send patches. But there’s another way…

Git has a way to send patches created with git format-
patch via email to the developers who need it. The git send-
email command handles this all for us:
$ git send-email --to gregkh@suse.de --to wfp5p@virginia.

edu \

 --cc devel@driverdev.osuosl.org \

 --cc linux-kernel@vger.kernel.org \

 0001-Staging-comedi-fix-brace-coding-style-issue-in-ni_la.

patch

will send the patch we created to the proper developers and
CC the proper mailing lists.

What next?
Now that you have successfully created
a patch and sent it off, the developer
who you sent it to should respond by
email in a few days with either a nice,
“thanks for the patch, I have applied it,”
or possibly some comments for
changes that you should make in order
to get it accepted. If you have not heard
anything within a week, send it again.
You shouldn’t worry about being
annoying; persistence is the key to

attracting the attention of a busy kernel
subsystem maintainer.

So there you have it, the simple steps
involved in creating, committing, and
sending off a Linux kernel patch.
Hopefully this means that everyone
reading this article will soon send in
their own kernel patch, and after you’ve
had fun doing that you’ll continue to
contribute to the largest software
project in the history of computing. LXF

LXF129.kernel 59 19/1/10 6:52:10 pm

