
50 LXF127 January 2010 www.linuxformat.com

 Normalize 0.7.7

“We’ll make your
raw audio sound
even and clear.”

When you make a mix CD using songs from various sources,
tracks from one album will often have been mastered at
different levels from those on another, meaning you have to
adjust the volume constantly. The answer is to find the
average level of each song and then individually normalise it
to meet that average. The command syntax for this is: bash$
normalize --mix song1.ogg song2.ogg song3.ogg song4.
ogg. The rest is up to Normalize, and it does this well.

Normalise song lists

Normalize

I
f you’ve ever tried recording audio, whether it’s a
brainstorming session, a weekly podcast, a talk at
a technical convention or just a few random ideas
spouted off quickly on to your phone, you’ll know

that sound can be difficult to perfect. With the help of
an application called Normalize, we’ll make your raw
audio sound even and clear, and reduce the signal-to-
noise ratio – all from within a command line interface.

First, a bit about audio. It’s full of
variation. Look at a graphical
representation of sound waves and
you’ll see that they have peaks and
troughs, big and small. Some jump
up suddenly and others slope gently
over a long period of time. These are
all important characteristics, but when you have too much
variation, at best you’ll be forcing people to ride their volume
control, and at worst you’ll discourage them from listening to
your recording at all.

Normalize is a command line application dedicated to
adjusting audio to avoid wild variation in sound levels. This
means you’ll be able to bring all volume levels in a file to an

average point, resulting in audio that’s both clear and easy on
the ears. It will also, by default, minimise any background
noise, so that even if you don’t have access to a professional
recording booth, you’ll be able to reduce all of those annoying
sounds that made it on to your recording.

Let’s take the raw audio for a podcast such as Linux
Format’s on TuxRadar. Some presenters are louder than
others; at times someone will whisper for effect and at other

times people shout to make a point.
We want to keep some variation, so
that shouts come across as shouts
and whispers remain whispers, but
we’d also like the general speaking
voices to be audible at a normal
listening level.

Volume is relative. One presenter might be shouting but if
the listener simply reaches over and turns down the volume,
the shout may as well be a whisper. What makes volume
effective in a recording is its relation to a normal, comfortable
listening level.

Understanding sound levels
Happily, the recording engineers of the world have a way of
handling this. They assume that -12dB or -15dB (it’s not
written in stone, so you’ll find some variation here and there)
is the normal listening level. The audience will adjust their
media players to make anything at that level comfortable for
themselves. Sounds intended to be heard as loud, emphatic
or explosive will be progressively above that baseline, while
anything meant to be soft, quiet or subtle will be lower.

Why -15dB? Because anything above 0dB will blow the
speakers, so with everything set at normal (-15dB), you have
plenty of room above that to make elements of your
recording different levels of loud.

Seth Kenlon is
a video and film
professional and
Linux geek, out to
prove that the two
are not mutually
exclusive. His
distros of choice
are Slackware
and Fedora.

Our
expert

Normalize

Engineer raw audio like a pro

Seth Kenlon shows you how to tweak audio recordings on the

 c

ommand line so that they sound crisper, cleaner

 a
nd more professional than ever.

LXF127.normalize 50 20/11/09 4:41:19 pm

www.tuxradar.com January 2010 LXF127 51

So, in a podcast consisting mainly of people talking, the
goal will be to make all of the voices as loud as possible
without clipping the waveforms (and therefore producing
distortion for the listeners), while keeping some of the natural
fluctuation in sound levels to account for the way the human
voice works. A simple command such as:
bash$ normalize audiofile.wav

is a great place to start. Normalize does a good job of
analysing and averaging the levels it finds in an audio file. If
only one is given, its waveforms are examined, an optimal
average level calculated and the adjustments are made.

However, we wouldn’t be sound engineers if we didn’t
tweak a few settings. The --no-adjust option will prove
invaluable, as it places Normalize in an analyse-only mode
and prevents it from altering a file. This is the -n flag, and we
can use it to compare the results of some of the tests we
perform, or to diagnose what needs to be done to an audio
file before attempting any normalisation.
bash$ normalize -n foobar.wav

Computing levels...

 level peak gain

-29.3460dBFS -9.6218dBFS 17.3460dB foobar.wav

This shows you the average level of the audio file (-29.34dB),
where the levels peak, and the safe amount of gain you could
apply to the file without clipping sound waves. It’s helpful
information that you’ll be able to use before applying
normalisation or other options to your audio.

It’s also a good idea to make a copy of whatever file you’re
going to manipulate, as Normalize doesn’t output to a copy,
but back to the original.

Power tools
The next tool we’ll wield is -a, a powerful switch that we can
use to control the amplitude of a file. Amplitude here refers to
something called RMS (root mean square), or the perceived
sound level of something. Assigning the decibel value of foo
to --amplitude (or -a for short) sets the average level of the
audio file to foo. For instance, where foo is -15dB:
bash$ normalize --a -15dB foobar.wav

Computing levels...

 foobar.wav 100% done, ETA 00:00:00 (batch 100% done,

ETA 00:00:00)

Applying adjustment of 0.35dB to foobar.wav...

 foobar.wav 100% done, ETA 00:00:00 (batch 100% done,

ETA 00:00:00)

bash$ normalize -n foobar.wav

Computing levels...

 level peak gain

-15.6998dBFS -0.0649dBFS 3.6998dB foobar.wav

It’s worth mentioning that Normalize’s default settings are
often very good, and you may never have to use the -a switch.
However, sometimes it needs a bit of guidance, and -a works
well for that.

There’s a variation on this switch that uses the peaks for
the basis of the average and it is, predictably, -p or --peak.
Going hand in hand with adjusting loudness is the device that
prevents sound waves that are already loud from getting even
louder to the point of hitting the red (that is, going above
0dB). This device, in the hardware world, is called a Limiter
and Compressor, and the software equivalent in Normalize is
the -l or --limiter flag.

This controls the limiter by permissible peak level; set foo
to the maximum peak you want any sound wave in your file to
reach. Its default is 0dB; the loudest level possible before
clipping. That’s a dangerous maximum setting, because you’ll

often be mixing sound files together and as two tracks mix,
their loudness compounds. You may find that your VU meters
(in Audacity or Qtractor and so on) hit the red zone less if you
set your limiter to -3dB or so.

By now you might be wondering why we don’t simply
boost the volume levels of the sound clip and be done with it.
Why not just run normalise -n on the file, determine how
much gain can safely be applied and pump up the level
accordingly? Well, technically it’s possible to do this, but it’s
far from ideal.

No gain, no pain
Gain indiscriminately increases all sound in the file, even
unwanted background noise such as outside traffic or a
nearby humming server. What a good limiter does for you is
create what’s called a noise gate, meaning that when
Normalize analyses the audio file, it determines what sound is
lower than everything else and assumes that at this low level,
it can safely be assumed there dwells only background noise.
When it applies its adjustments, it doesn’t apply them to this
level of sound, thereby increasing the “audio contrast”, or the
difference between the clearly audible signal versus the now
very quiet background noise.

So, using one command coupled with a few switches,
we’ve successfully raised the volume of our audio file while
keeping the background noise where it was to begin with.
We’ve limited the sound from getting too loud, however, and
have managed to maintain some of the internal fluctuation in
the voices, providing a good average level overall.

From these two simple projects, the sheer power that
dwells in the Linux command line becomes apparent. With
tools such as Normalize, Sox, FFmpeg, Mencoder and others,
audio processing can be scripted, automated or done
manually without a GUI. Normalize provides great default
presets, as well as a host of options to customise sound
processing, and can help you optimise audio for all of your
multimedia needs. LXF

 Source and normalised audio in Audacity. Notice the distinct lack of
background noise in the edited version, even though the signal is stronger.

Normalize

LXF127.normalize 51 20/11/09 4:41:20 pm

