
56 LXF126 Christmas 2009 www.linuxformat.com

/proc and /sysfs

T
he /proc directory (short for process
filesystem), is fundamentally a myth: it doesn’t
really exist anywhere at all. Instead, it’s a
virtual filesystem, generated at boot and

updated thereafter through interacting with the kernel.
It doesn’t use any disk space (because it doesn’t really
exist!), and it uses only a small amount of memory.

When you ask to read a
file, information is retrieved
by /proc talking to the
kernel, and then the
information is handed back
to you as though it were a
file. This makes it great both
for communication between different parts of the system (it’s
used by various utilities, including the GNU version of ps, with
the major security advantage that such utilities can operate
entirely in userspace, just interacting with /proc rather than

working in kernel space at all), and for pootling around with to
satisfy your own interest in what’s going on under the hood of
your system.

In older Unices (such as BSD and Solaris), /proc is strictly
process-related, but in Linux it’s extended to non-process
data as well, making it even more useful. This also means that
in some cases you can use it to make changes as well as to

read data. This is discussed
later on in this article: you can
make changes in /proc files that
change system settings on the
fly, but you can’t change
process data by editing files or
directories in /proc. Which is

probably for the best, as it could have interesting results! Do
be aware when messing around with the bits of /proc that
are editable that you’re making changes to your system on
the fly and that it’s possible to screw things up…

“The /proc directory is
fundamentally a myth: it
doesn’t really exist.”

Get to grips with
/proc and /sysfs

Did you think that ‘everything is a file’ was ancient Unix gibberish? Think
again: Juliet Kemp delves into the virtual files that keep your box going.

/proc and /sysfs

LXF126.proc 56 22/10/09 4:24:46 pm

/proc and /sysfs

www.tuxradar.com Christmas 2009 LXF126 57

There are two main sections to /proc: process data
and system data. To take a look at how /proc handles
processes, start off by typing ls /proc. You’ll see a

long list of numbered directories: these are your processes,
one directory per process ID. Have a look at your process list
(using ps -A), and pick a process. (Note that if you’re not
logged in as root or using sudo, you’ll still be able to see all the
process directories and their directory listings, but you won’t
be able to look at the contents of all the files; in this case,
you’re better off using ps -u to list your own processes and
picking one of them to look at. Even then you may not have
access to all files – try a few different processes if you run into
permissions errors.)

The process we’ll use as a sample is
juliet 25175 0.0 0.0 18044 1552 pts/31 Ss Jul14 0:00 /
bin/bash

This corresponds to the directory /proc/25175/.
Use ls -l to look at the contents of that directory (the -l

option will give you the target for any links, which is useful).
The file cmdline tells you what command was used to launch
this process: you may be warned that this might be binary,
but in fact it’s mostly text and easy to read.

This information can be useful if you’re trying to debug
something that has a launch-related problem: you can check
whether the path to the command was specified, or whether
there’s anything else making its way on to the command line,
as may be the case with processes started from a script in
/etc/init.d/. For example, on one of our machines running
Nagios 3, the /proc/2607/cmdline file reads like this (the
peculiar characters are correct: that’s the text rendition of the
binary parts):
/usr/sbin/nagios3^@-d^@/etc/nagios3/nagios.cfg^@

So it’s loading the config file /etc/nagios3/nagios.cfg,
which may be useful information if we’re having config issues.

The environ file, similarly, gives you the command
environment (again this is a text/binary file, but parts of it at
least are parseable by eye), which is also useful for
troubleshooting. Try starting the process on another machine
and comparing the two files with vimdiff or gvimdiff (both
easier on the eye than diff itself) to see if you have any
differences that might explain the problems. This is especially
useful if you can run something as user1 but not user2, or on
one machine but not another.

Note that in the case of some processes environ is one of
the files that only root can access. If you’re not root and this is
true of your process, try looking at another one.

/proc/self will
always point to the
current process,
ie the process
that’s currently
accessing it.

Quick
tip

/proc and processes

 As you can see
here, environ
contains some
binary junk but is
still readable.

exe has a link to the original executable file itself, if it still
exists: a program can continue running after the executable
has been deleted.

The fd directory allows you to check which files the
process is accessing (information that you can also get via
strace, but this can be slower, and strace output can be very
verbose). task contains hard links to any tasks (ie other
processes) started by this process: so, any child processes,
but also to the process itself. Somewhat disappointingly, the
directory /proc/298/task/289/task doesn’t exist, so you
can’t keep looping round forever…

Where processes work
Find out what directories the process is accessing (or running
with respect to) by looking at the links cwd and root. cwd is a
link to the working directory of the process. For system
processes this is likely to be /; for something like the Bash
session you kicked off by logging on, it’ll be your home
directory; for other user processes it will of course reflect
which directory the user was in when they started the
process. root is a symlink to the root path, and is almost
always /, unless the process is being run in a chroot jail.
Again, this can be useful information when bugfixing: if a
process is using a different root path and you weren’t aware
of it, unexpected things might happen.

maps shows the memory maps to executables and library
files. For each executable or library, the memory address is
given, together with the permissions (r/w/x, s(hared), and
p(rivate – copy on write)), the offset into the file, and the
device and device inode. For our Bash:
00400000-004ba000 r-xp 00000000 fe:00 4086
/bin/bash 006b9000-006c3000 rw-p 000b9000 fe:00 4086
/bin/bash 006c3000-00799000 rw-p 006c3000 00:00 0
[heap] 2adc4d2f3000-2adc4d30f000 r-xp 00000000 fe:00
105924 /lib/ld-2.7.so

Finally, stat and status both give status information,
although the one that you’ll want to look at is status, as this is
nicely formatted, labelled and otherwise readily human-
readable. This is the full list that ps pulls selected information
from, and unlike ps -l or any other long-information ps option,
status is arranged vertically rather than horizontally so it
won’t run sideways off your screen.

We haven’t covered all of the files and links in the process
directories, just the main ones: for further information, the
proc man page is incredibly comprehensive and well worth a
look. Or you can just poke around a bit and see what you find! Directory listing of my desktop’s /proc directory

/proc and /sysfs

LXF126.proc 57 22/10/09 4:24:52 pm

/proc and /sysfs

58 LXF126 Christmas 2009 www.linuxformat.com

/proc and /sysfs

So /proc deals with process information, and we’ve taken
a look at what you can get out of that. It also deals with
system information: this is what’s hapening in all those

other files and directories at the first level of the /proc
directory listing that have real names rather than numbers.

You may already be familiar with CPUinfo and Meminfo,
which tell you about the machine’s CPU and memory
respectively. CPUinfo includes information about processor
CPU and cache, processor speed, and power management;
Meminfo gives the total available memory and then a big stack
of facts about cache, vmalloc, free memory, and so on. All
frequently useful information and very easy to access and
read from here.

You can also get uptime and version information from
uptime and version (this is where the uname command gets
its information from). And /proc/cmdline tells you what
options were passed to the kernel at boot time, for example:
auto BOOT_IMAGE=Linux ro root=302 hdc=ide-scsi

This machine is using the Linux boot image (in this case you
can check /etc/lilo/lilo.conf to find out which file this
corresponds to – Grub uses
/boot/menu.lst as a rule),
with the root partition initially
mounted read-only (this is
normal). root=302 indicates
that the root partition is the ‘3
major, 2 minor’ device. To find
out which this is, check the partitions file, which lists devices
by major and minor number. In our case, it looks like this:
major minor #blocks name
3 0 39082680 hda
3 1 9767488 hda1
3 2 14651280 hda2
3 3 14161297 hda3
3 4 498015 hda4

so the root partition is hda2 (as df will also tell us!). The final
option in /proc/cmdline tells the kernel to treat the DVD drive
(at hdc) as IDE-SCSI.

The acpi/ directory contains ACPI (Advanced
Configuration and Power Interface) information – what exactly
is in here will depend on what reporting your hardware
supports. acpi/thermal_zone/ may contain information from

the internal temperature sensors if this reporting is supported
(unfortunately it isn’t on our desktop!). There’s also an apm
file for looking at Advanced Power Management information if
your system has that enabled (usually the case for laptops).
This is the file that apm -v gets its information from, and it’s
useful for checking your battery status on a laptop if you’re
using a console and/or don’t have a graphical widget running.

Get locked
locks displays the files that are currently locked by the
system. Here’s a few sample lines:
1: FLOCK ADVISORY WRITE 4056 03:02:588739 0 EOF
2: FLOCK ADVISORY WRITE 2747 03:02:596797 0 EOF
3: POSIX ADVISORY WRITE 2728 03:02:596796 0 EOF
4: POSIX ADVISORY WRITE 2705 03:02:642377 0 EOF
5: POSIX ADVISORY READ 2507 03:02:572375 4 4

FLOCK locks result from an flock system call; POSIX
locks from a newer lockf system call. ADVISORY locks
(unlike MANDATORY locks) don’t prevent other processes
from accessing the data, just from locking it, and you are also

shown whether the lock is for read
or write access. The fifth column
is the process ID of the process
holding the lock, and the next
column is the file ID, in the form of
major-device:minor-
device:inode. The final columns

show the start and end of the locked region: so in the first
four lines that’s the whole file (0 to end of file). This is
probably more of academic than practical interest, but
occasionally it can be useful, for example if you’re trying to
retrieve deleted files by inode number.

To find out what filesystems your system supports, check
out /proc/filesystems, which lists the available filesystems
and marks them with nodev if they’re virtual or networked.
This file is useful if you’re trying to connect disks from other
systems (either locally or remotely) and want to find out
quickly if it’s going to work without recompiling the kernel.

kcore is more memory information – unfortunately it’s
not human-parseable at all, though (but it is useful to GDB
and other debuggers). /proc/kmsg deals with kernel
messages. If you have a look at this file as root you should be
able to see kernel messages, although if there’s not much
kernel activity this may look blank, and on at least one system
we’ve tried it on it doesn’t seem to do much at all.

Change network settings
The net/ directory provides the raw info for various
networking information commands, such as route. In most
cases it’ll probably be easier to get the data from the relevant
commands: technically these files are human-readable but
there’s largely just a lot of numbers in there! Column
headings are provided if you want to take a look.

The sys/ directory is genuinely useful for more than just
interest’s sake, as it is the directory that corresponds to
kernel variables. As mentioned earlier, the text/system
communication of /proc in some cases goes both ways: as
well as accessing information, you can also change it by
editing files if the permissions are correct. sys/ is the main
directory in which you might find yourself doing this.

For example, look at /proc/sys/net/ipv4/ to see some
networking values that you can change if you want (and if you

/proc and information

 proc: full of
fascinating
yet sometimes
baffling
information
(this screenshot
shows /proc/
vmallocinfo).

which tell you about the machine’s CPU and memory

of facts about cache, vmalloc, free memory, and so on. All
frequently useful information and very easy to access and

options were passed to the kernel at boot time, for example:

To find out which
file is referred to by
a particular inode
number, you can
use find / -inum
INODE_NUM.
This may take a
long time on a
large system!

Quick
tip

“sys/ is the directory
that corresponds to
kernel variables.”

LXF126.proc 58 22/10/09 4:24:57 pm

/proc and /sysfs /proc and /sysfs

www.tuxradar.com Christmas 2009 LXF126 59

have root privileges). Have a look at /proc/sys/net/ipv4/
tcp_keepalive_time. This sets how long (in seconds) it takes
the TCP keepalive routines to send the first keepalive probe.
The default is 7,200 seconds (2 hours); if you want to start
keepalives sooner, you can edit this file accordingly. The rate
at which they’re sent after the first one is governed by /proc/
sys/net/ipv4/tcp_keepalive_intvl (75-second gaps by
default), and the number of dropped keepalives before the
connection is marked inactive is set in /proc/sys/net/ipv4/
tcp_keepalive_probes (this is nine by default). If you’ve got a
flaky network, this last one may be worth increasing: to
change it to 15, use:
echo 20 > /proc/sys/net/ipv4/tcp_keepalive_probes

(as root). Note that if you’re changing settings here, you
shouldn’t use an editor – use echo instead, as shown.

This avoids the risk of the kernel changing the value under
you while you’re editing, which could happen if you use an
editor to open the file – bear in mind that these files don’t
really exist, but are just a pretend file getting values into and
out of the kernel. Similarly, you should use cat (piped through
less if necessary) to look at files.

To enable IP forwarding, change the value in /proc/sys/
net/ipv4/ip_forward to 1 (0 disables it).
echo 1 > /proc/sys/net/ipv4/ip_forward

There are plenty of other files you can play around with.
Basically, if a file has the write attribute set, you can change it
– but do be aware that you could screw up your system by
doing this! The good news is that changes made in this way
will last only until the next boot; to make changes permanent,
use sysctl instead. Working directly with the /proc/sys/
settings is a useful way to experiment before making
permanent changes.

There’s plenty of other variables in sys/ that can be
fiddled with. Changing /proc/sys/fs/file-max will change
the number of filehandles that are available – this will get rid
of error messages stating that no more files can be opened
because the maximum number of open files has been

reached. The default is 4,096, but you can use any number.
(It’s probably best to change this only if you actually start
seeing these errors.) You can also do the same thing for
inodes with /proc/sys/fs/inode-max, although the total
number of inodes available overall on the system can’t be
changed in this way.

/proc/sys/kernel/ctrl-alt-del enables you to set the
response to the Ctrl+Alt+Del key combination. 1 will set this
to be a graceful shutdown (like typing shutdown -h now; 0
will be an immediate shutdown (like turning the power off). 1
is probably a safer value (after all, if you really have to do an
immediate non-clean shutdown you can always turn the
power off).

You can use /proc/sys/kernel/hostname to configure
your network hostname – be careful doing this if you have
DHCP, as you might create a conflict.

Recognise devices
/proc/sys/ isn’t the only place where you can usefully edit
values. Another useful trick is to use /proc/scsi/scsi to get
your system to recognise a new hot-swap SCSI drive. You will
need to know a few pieces of information:

 The host adapter ID (the first adapter is 0).
 The SCSI channel on the host adapter (the first channel is

designated 0).
 The SCSI ID of the device.
 The LUN number (the first LUN is designated 0).

Then use
echo “scsi add-single-device a b c d” > /proc/scsi/scsi

to add your disk to the system. After that you can mount
filesystems, format it, or whatever else you need to do – use
fdisk -l if need be to check which device it is.

As with the process directories, there’s a lot of information
in /proc/ and we haven’t covered all of it here. Spend some
time having a poke through /proc with the man page to find
out what else is there and what you might be able to change
for maximum tweak value.

More information

Until the 2.6.x kernels, device information was also
all kept in procfs. However, since the 2.5 kernel
development cycle, this information has been moved

to sysfs, which is another virtual filesystem, exporting device
and driver information from the kernel to userspace.

Every time a new driver or device/class device is added, a
new directory somewhere in /sys is created. /sys/devices/
is organised to mirror the physical layout of the various
devices, so you can see parent/child relationships.
/sys/bus/ has a similar structure, ending up with symbolic
links (and thus showing you which bus a particular device
belongs to).

Another way to look at devices according to which sort of
device they use is via /sys/class/ (this is likely to be the
most useful/comprehensible approach). Some of the
attributes here, once you’ve gone far enough down the
directory tree, may be editable. For example, rotation of the
framebuffer console is governed by /sys/class/graphics/
fbcon/rotate: if you set this to 2 instead of 0, your console
will be upside down! (This only works if it’s supported in your
distribution’s kernel.)

Not all devices have attributes: the best bet is to look
around the /sys directory, or search www.kernel.org for the
relevant documentation. LXF

Unfortunately the proc documentation
can be a bit lacking in some cases.
Start with the man page; you may also
be able to find some information in
/usr/src/linux/Documentation/.

Alternatively, take a look through
/proc and then Google for whatever file

or directory names you find. There’s a
really useful article at www.ibm.com/
developerworks/linux/library/l-adfly.
html, which focuses on things that you
can change on the fly with /proc; then
there’s also www.kernel.org for all your
kernel needs.

You can use sysctl
to manipulate
kernel parameters,
as well – type
sysctl -a | less to
look at a list
of parameters.

Quick
tip

 Here’s the
contents of
sysfs on a typical
desktop machine.

sysfs

LXF126.proc 59 22/10/09 4:25:1 pm

