
Tutorial Server security

98     LXF121 August 2009 www.linuxformat.com

Martin
Meredith
is a Debian and 
Ubuntu developer, 
and a security 
expert for a major 
UK online retailer

Our
expert

Last month We built and configured a home telephone network with Asterisk.

a basic LAMP stack, or an mail server. These services
normally open up their ports for anyone on the internet to
see, which isn’t always what we want.

By way of example, let’s have a look at a recently set up
server using a program called nmap. This is normally
available from your distribution’s package manager, or at
http://nmap.org. Once you have nmap installed, supply it
with your server’s address to get an output that looks like:
mez@lazy: % nmap torpor

Starting Nmap 4.76 (http://nmap.org) at 2009-05-04 11:56

BST

Interesting ports on torpor:

Not shown: 984 closed ports

PORT STATE SERVICE

22/tcp open ssh

25/tcp open smtp

53/tcp open domain

80/tcp open http

110/tcp open pop3

143/tcp open imap

993/tcp open imaps

1234/tcp open hotline

3306/tcp open mysql

10000/tcp open snet-sensor-mgmt

Nmap done: 1 IP address (1 host up) scanned in 3.46

seconds

The results of nmap show 10 ports are open for anyone on
the internet to connect to. Most of these are normal things
that you’d want to see available on the server, such as SSH
and email. Some of them, however, we don’t want to have
open to the internet (such as MySQL) and some of them are
just plain confusing, such as port 1234.

Is anybody listening?
So, as we’ve seen above, we can’t always tell what’s listening
in on a certain port. A quick Google search tells us that port
1234 is normally used by various trojan viruses, which means
we should probably do a little more investigation to find out
what’s going on and why that port would need to be open.

The easiest way to find out what program is listening on a
specific port is to use the netstat command. Running this
without any options will give you a list of the currently open
connections. We, however, want to find out what is listening to
a specific port.

To find out what program is running on port 1234, we’ll
need to run netstat -pnl as root. This will give us a list that
might look a little confusing at first, but we’re only interested
in two of the columns in the output. Since we already know

Security: Protect

Hardcore Linux Challenge yourself
with advanced projects for power users

Martin Meredith teaches you how to manage your ports, deal with 
vulnerabilities and stop hackers from taking advantage of your server.

W
ay back in the early days of dial-up, the internet
mostly contained library catalogues, military
secrets and students’ Dungeons and Dragons

spec sheets. Now there are websites for people, their pets,
their friends and family, and their businesses. However, while
most people are happy to use a free hosting provider, or to
pay a company to host their websites for them, the more
dedicated web master tends to plump up for a dedicated
server, or a Virtual Private Server (VPS).

Running your own server means that you have to be aware
of the multitude of potential security issues you’re exposed to
on the internet, though. These days, most home computers
have a firewall in place, or connect through a router that can
protect them from the dangers lurking on the web. If you own
a server, you’ll still need a firewall, but there’s much more you
can do to be safe online and we’ll show you how.

How secure are you?
On the internet, every service you connect to has a port that it
uses. For example, when you connect to a website, you use
port 80 (or port 443 for HTTPS) and when you SSH, you use
port 22. FTP uses port 21, IMAP uses port 143, and so on.
When a server runs, it opens that port and waits for an
incoming connection.

So, how does this affect you? When you run a server, you
might have a few different services running – maybe you have

LXF121.tut_adv 98 8/6/09 12:11:30 pm

Server security Tutorial

www.tuxradar.com August 2009 LXF121     99

 Tripwire 2.4.1.2

If you missed last issue Call 0870 837 4773 or +44 1858 438795.

the port number we’re looking for, all we need to look at is the
column called Local Address for an entry ending with :1234
(the colon separates the IP address and the port number).
The line we’re interested in is:
tcp 0 0 0.0.0.0:1234 0.0.0.0:* LISTEN

24481/php-cgi

This tells us that the program php-cgi is listening on all IP
addresses on the server (0.0.0.0 means any IP address) for a
connection from anywhere. PHP is a scripting language, and
here we’ve set it to listen in Fast CGI mode to port 1234.

Anyone being able to run scripts on our server is not a
good thing, so it’s time to enlist the help of iptables.

Laying down the law
Available by default on nearly all Linux distributions, iptables
is Linux’s answer to all your firewalling needs. In essence, a
firewall sits between your computer and the internet, either
denying or allowing traffic that’s going to and from your
server, based on a set of rules.

iptables is relatively easy to set up, but learning how to
write the rules can take time. Below is the rules file that we’ll
be using on this server:
*filter

:INPUT DROP [0:0]

:FORWARD DROP [0:0]

:OUTPUT ACCEPT [0:0]

-A INPUT -m state --state RELATED,ESTABLISHED -j

ACCEPT

-A INPUT -s 127.0.0.1 -d 127.0.0.1 -j ACCEPT

-A INPUT -p tcp -m tcp --dport 22 -j ACCEPT

-A INPUT -p tcp -m tcp --dport 25 -j ACCEPT

-A INPUT -p tcp -m tcp --dport 53 -j ACCEPT

-A INPUT -p udp -m udp --dport 53 -j ACCEPT

-A INPUT -p tcp -m tcp --dport 80 -j ACCEPT

-A INPUT -p tcp -m tcp --dport 110 -j ACCEPT

-A INPUT -p tcp -m tcp --dport 143 -j ACCEPT

-A INPUT -p tcp -m tcp --dport 993 -j ACCEPT

-A INPUT -p tcp -m tcp --dport 10000 -j ACCEPT

-A INPUT -s 192.168.1.3 -p tcp -m tcp –dport 3306 -j

ACCEPT

-A INPUT -p icmp -m icmp --icmp-type 0 -j ACCEPT

-A INPUT -p icmp -m icmp --icmp-type 8 -j ACCEPT

COMMIT

Here, *filter tells us which table these rules apply to. We’ll
only be covering the filter table here, but other tables are
available for setting up processes such as NAT (Network
Address Translation), routing and so on.

The next few lines, those containing [0:0], set up the
default policies for the chains in iptables. When we use
iptables, we generally work with three chains: INPUT for all
incoming connections, FORWARD for connections that are
forwarded to another server (we won’t be using this here),
and OUTPUT for all outgoing connections. A policy for these
chains can be set to ACCEPT, DROP, or REJECT, which
either allows the connection, ignores the connection attempt,
or sends back an error code saying that the port is not open.

Here we’ve set the ACCEPT and FORWARD chains to
DROP all incoming connections, and the OUTPUT chain to
ACCEPT by default. However, these defaults are only run
when a packet doesn’t match any of the rules and even then
we’ll need to add a few exceptions.

Before we do that, it’s worth mentioning that the final line,
COMMIT, tells iptables to apply these rules to the firewall.
This is the point where your firewall becomes active and
starts defending your server.

Plugging the holes
The lines beginning -A INPUT set up our firewall rules. These
are written as if you were calling iptables directly, but without
the iptables at the start of the command. You can find out
more information about how to write these rules from the
iptables man page.

Each rule starts with -A INPUT, which tells iptables to
append the rule to the chain for input. If we were adding rules
to govern output instead, all we’d need to do is substitute
INPUT for OUTPUT here. After that, we have the matching
part of the rule and we end the rule line with -j ACCEPT,
which tells iptables to join the packet to the ACCEPT chain –
in other words, let the packet through. If we wanted to
REJECT or DROP the packet instead, we could substitute
those terms in the place of ACCEPT accordingly.

Now let’s take a look at the line:
-A INPUT -m state --state RELATED,ESTABLISHED -j

ACCEPT

which tells iptables to allow any connection that’s related or
established to be allowed through. This is a good rule to have,

ct your server
Running netstat
-pnl as root will
tell you which
programs are
listening to ports.

Quick
tip

The internet Firewall Your server

 You’ve seen this
diagram before
I’ll wager, and
yes, it really is
this simple.

LXF121.tut_adv 99 8/6/09 12:11:31 pm

Tutorial Server security

100     LXF121 August 2009 www.linuxformat.com

since it permits any connection you have already made to
continue – for example, the current SSH connection will stay
active if you’re using SSH to change the firewall rules. It also
allows incoming connections that are related to outgoing
connections (TCP works both ways and you’ll find you can’t
make outgoing connections from the box without this rule).

The next line down tells iptables to accept any
connections that originate from 127.0.0.1 (-s means source IP
address) connecting to 127.0.0.1 (-d refers to the destination
IP address), which translates to ‘accept any connection I
make to myself’.

In the next nine lines, we open up the ports that we saw
earlier to the outside world. Notice that we don’t have any
code that allows access to ports 3306 (MySQL) and 1234
(the misconfigured PHP installation), because the firewall rule
that allows connections locally takes these into account.
However, we do want to add an exception to rejecting all
outside access to MySQL, which comes in the form of:
-A INPUT -s 192.168.1.3 -p tcp -m tcp –dport 3306 -j

ACCEPT

This specifically enables the IP address 192.168.1.3 to
connect to port 3306 and it’s here because we have another
server on our local network that needs to access MySQL.

The final two lines above COMMIT allow the server to
respond to pings, and enable it to receive ping responses.

After saving the file (to a location similar to /etc/iptables.
conf) we can run the command:
iptables-restore < /etc/iptables.conf

enabling the firewall rules we’ve written above. If we run nmap
again, it gives us the following results
mez@lazy: % sudo nmap torpor

Starting Nmap 4.76 (http://nmap.org) at 2009-05-04 11:56

BST

Interesting ports on torpor:

Not shown: 984 filtered ports

PORT STATE SERVICE

22/tcp open ssh

25/tcp open smtp

53/tcp open domain

80/tcp open http

110/tcp open pop3

143/tcp open imap

993/tcp open imaps

10000/tcp open snet-sensor-mgmt

Nmap done: 1 IP address (1 host up) scanned in 10.30

seconds

Notice that the output now says that it’s not showing filtered
ports instead of closed ports. Also, you may have to run nmap

as root – in our tests, the above firewall configuration worked
too well and nmap couldn’t find all the open ports without
being run as root.

What’s Nessus-ary?
This basic firewall should protect us to some extent, but there
are other potential vulnerabilities in every system, especially
for servers that don’t get updated often. To combat this, there
is a tool known as Nessus, which comes in two parts – the
client and the server. The reason for this is so that the server
can be installed in a remote location and used to test the
connection to the local service. In this case, the computer
that we’re testing isn’t local to us, so we can install both the
server and the client locally.

Once you’ve installed Nessus and nessusd from your
preferred package manager, you’ll need to set up a user. Run
the command nessus-adduser and follow the instructions on
screen. Now, run the Nessus client (found under Applications
> Internet > Nessus in Ubuntu).

When Nessus runs, it works through a list of plugins that
enable the testing of various vulnerabilities. Because there are
new vulnerabilities discovered every day, it’s wise to keep
Nessus up to date. Tenable Network Security, the
application’s creator, has two different lists of plugins
available – the HomeFeed and the ProfessionalFeed. The
ProfessionalFeed provides a more current list, meaning that
the newest vulnerabilities can be checked as soon as plugins
for them exist. ProfessionalFeed costs $1,200, though, so
unless you’re working with Nessus on a daily basis, or working
in a high-security environment, HomeFeed is easily enough.

Tenable requires you to register for its feed downloads,
which you can do at http://linkpot.net/enviably. After that,
run the command nessus-fetch –register <your
registration code> with the registration code that you’ll be
supplied via email.

Once that’s set up and you load the program, you may find
the Nessus’s main screen is a bit overwhelming. Instead of
trying to walk you through all of it abstractly, we’ll show you
how to perform a basic scan.

First of all, you need to log in to the server with the
credentials that you set up previously. After you’ve logged in,
you’ll be presented with the Plugins screen. This is a list of
scripts that Nessus will try to run. Click the Select All button,
and flip to the Scan Options tab. Here, you can find the
general scan options for the Nessus scan. The most

Never miss another issue Subscribe to the #1 source for Linux on p102.

Et tu, Brutus?

You can make your
firewall rules run on
startup by adding
the iptables-
restore command
to /etc/rc.local.

Quick
tip

Even with different security measures 
in place, there’s still the possibility that 
someone can compromise your server 
simply by guessing the password! 
There are a number of scripts out there 
that use a dictionary to try every 
possible combination of username and 
password in a relatively short time. 

Fail2ban (www.fail2ban.org) tries to 
overcome this by monitoring your log 

files for failed login attempts. When it 
detects that someone has tried to login 
multiple times and failed, it will restrict 
their access to the server (using the 
firewall) for a certain amount of time.

This isn’t a great solution if you 
regularly forget your password, but it is 
good for stopping people in their tracks 
when they try to use brute force to pry 
their way into your server.

 Nessus scans your servers for vulnerabilities in its code
that could be exploited by the unscrupulous.

LXF121.tut_adv 100 8/6/09 12:11:31 pm

Server security Tutorial

www.tuxradar.com August 2009 LXF121     101

interesting of these options is the Safe Checks checkbox,
because Nessus won’t perform scans that have the potential
to crash your server if it’s ticked. However, as long as you
have physical access to the server, or some way of resetting it
remotely, we’d recommend leaving this box empty, because
this enables you to perform a more in-depth scan. Ultimately,
we’d rather have Nessus find a security hole and crash the
server than leave the vulnerability in place.

Finally, all we need to do is put the name or IP address of a
server into the Target tab and then getting Nessus underway
is a simple case of clicking Start The Scan and letting the
program do the rest.

Once Nessus has finished scanning, it will present you with
a report showing a list of items that Nessus has found. A lot of
the things that Nessus returns are informational messages
such as ‘you have an SSH server running’, but anything
important will have a red stop icon next to it. If Nessus finds
vulnerabilities, it will tell you how to fix them (or point you to
the right place to find out how to fix them). You should act on
any critical points as soon as possible.

Trip ’em up
If all goes well with your Nessus scan and subsequent
vulnerability fixing, you should now have a server that’s hard
for someone to get into. However, that doesn’t mean that it’s
impossible to breach your security – the only way to make
sure that nobody can get into your system it to turn it off.

So, what can we do if we can’t guarantee the security of a
system unless it’s off, or at least disconnected from the
internet? At the point where a hacker gets into your system,
you can still, at a minimum, make sure you know that they’ve
been there. An Intrusion Detection System (IDS) enables you
to do this, although we hope you’ll never have to rely on it.

The most widely known IDS at the moment is Tripwire,
which has been around since 1992. At the moment, three
programs called Tripwire are available and they all do the
same thing. Only one of them, however, is open source. You
can find it in your distribution’s package manager, or by
heading over to http://tripwire.sf.net.

Tripwire works by creating a database of all the files on
your system and notifying you when something about them
has changed. Because of the way the system works, the best
time to install Tripwire is before you connect the system to the
internet. If someone has worked their way into your system
before the software has been installed, then Tripwire will just
end up making sure that any back door the attacker has
created stays in place.

Setting up Tripwire is a lengthy process, and somewhat
beyond the scope of this tutorial, but you can find more
information about the process at www.alwanza.com/
howto/linux/tripwire.html and www.tripwire.com.

Keep an eye on your servers
Possibly the most important thing to do when considering
security for your servers is to make sure that you keep an eye
on what’s going on. This process is generally known as
auditing and, if done correctly, can ensure that issues are
resolved before they have the opportunity to become blown
out of proportion.

While we’ve already used Nessus to audit the security
from outside the server and mentioned using Tripwire to audit
the integrity of files on the system, there are many other

auditing tools available. However, we’ve found that the best
way of auditing a system is to read the log files – or least get a
program to do that for you (more on that in a moment).

Servers tend to generate a lot of information about what’s
happening. If you have a look in your /var/log folder, you’ll
find a variety of different log files, ranging from the system log
to Apache access logs. These logs provide plenty of useful
information, but figuring out what’s worth reading and what’s
not can be a tedious job.

This is where Logwatch comes in – it’s a utility that reads
your log files, and can send you daily emails about the most
interesting parts. These emails may be long, but they will let
you know when things aren’t going to plan. They can also
keep you informed if one of your users starts trying to access
things that they shouldn’t be, giving you the time to address
the issue before they cause a problem.

Under Debian or Ubuntu, the installation and configuration
of Logwatch is simple. However, to receive the information as
emails in HTML format, you’ll need to alter the output
method, output format, and the email address you’re sending
the information to. You can change these options by editing /
usr/share/logwatch/default.conf/logwatch.conf so that:
Output = mail

Format = html

MailTo = youraddress@yourdomain.net

This will send the reports to your email inbox, meaning you
can stay up to date with server news wherever you are. LXF

Next month Get total privacy on the web with the Incognito live CD.

A command line alternative
In this tutorial, we’ve spent some time 
teaching you how to write firewall rules 
on the command line. There are, 
however, alternatives to this approach. 
Our favourite (and one that we tend to 
use on a regular basis) is Webmin, a 
tool that enables you to manage your 
server through your web browser. If 
you’ve installed Webmin on your server, 
you can find the firewall options under 
Networking > Firewall.

If you’ve understood the basics of 
creating rules for a firewall that we’ve 
covered here, using Webmin should be 
a walk in the park. To begin with, click 
Revert Configuration to load the firewall 
rules that you set up earlier. Then you 
can modify the rules as appropriate for 
your new Webmin setup. Finally, you 
should hit Apply Configuration to 
finalise the modified rules once you’ve 
finished changing them.

LXF121.tut_adv 101 8/6/09 12:11:32 pm

