
Dr Brown’s Administeria

62 LXF119 June 2009 www.linuxformat.com

Dr Brown’s Administeria

The birth of commercial radio
broadcasting in the UK has almost
passed out of living memory – the

first BBC transmissions from 2LO in
London were 85 years ago. I remember
constructing a crystal set as a young boy
(and a one-valve receiver in my teens) and
being fascinated by the results.

But before that, in the beginning, to
adjust the ‘cat’s whisker’ of your radio, and
be rewarded by hearing through your
headphones for the first time ever a faint,
disembodied voice plucked from nowhere,
must have been a jaw-dropping experience.
Nowadays, the pace of technological
development has advanced to the point
where it’s well-nigh impossible to impress
anyone (particularly the younger folk) with
anything at all.

Come friendly data
It seems to me that most of the
fundamentally new stuff to have emerged
in the last decade relates to the digitisation
of the world’s information sources – its
conversion into vast, structured, searchable
collections of ones and zeros. GPS
navigation systems can tell us where we are
on the planet to within inches (and what
would the navigators of the early sailing
ships have given for that?) We have search
engines that can instantly find the entire
text of a poem based on my memory of a
single line.

Given just a postcode, Google Maps
pinpoints the hotel I’ll be staying in next
week, and provides street-level photos of
the local restaurants. Google Earth can
show me the pool I swam in at a friend’s
house in California. I can carry the
complete works of Shakespeare in my
pocket on a £5 memory stick. I can
download a readout of the three billion base
pairs of the human genome. Does any of
this strike you as inspired? It sure
impresses the heck out of me!

I have recently been introduced to Moodle.
In fact, over the last month we have enjoyed
a fairly intimate relationship. Moodle is a

free, open-source learning management
system. It’s entirely web-based, written in PHP,
and available for Linux, OS X, and Windows.

To get an idea of what moodle looks like you
can go to the demo site at http://demo.
moodle.org. Here, you can explore a real
moodle course in the role of a student, teacher,
or even as an administrator. Be aware, however,
that Moodle’s appearance can be dramatically
changed through the use of themes, for
example to include corporate branding.

At its most basic, Moodle is a container for
training content. Material is created in HTML,
and Moodle includes a decent web-based
WYSIWYG HTML editor. But there’s much
more to it than that. You can create a wide
variety of activities, including:

 Assignments.
 Chat windows.
 Forums Where students and teachers can

hold discussion threads.
 Choices The teacher asks a question and

specifies multiple response choices.
 Quizzes Quizzes are created from questions

provided by the course creator; they can be
multiple choice, true-false or “short answer”.

 Surveys Used to gather feedback on the
students’ educational experience.

Moodle isn’t something you’re going to
install and deploy just for fun over a wet
weekend. You need to get Moodle, PHP, Apache
and a back-end database such as MySQL to

Esoteric system administration goodness from
the impenetrable bowels of the server room.

Dr Brown’s
Administeria

Indistinguishable
from magic

In the Moodle
Moodle If you’re looking to deliver online training,
consider this free learning management system.

play nicely together. Once it’s working, you can
take off your Linux geek’s hat, put on your
educator’s hat, and figure out how to use
Moodle’s features to deliver engaging,
interactive, online training content.

If you need help, there is a program of
Moodle conferences around the world. They
are called MoodleMoots. Sounds terribly
Tolkien to me…

Dr Chris Brown
The Doctor provides Linux training, authoring
and consultancy. He finds his PhD in particle
physics to be of no help in this work at all.

 Moodle supports a wide range of
activities to make the training interactive
and provide feedback to the teacher.

LXF119.sysadmin 62 17/4/09 12:36:28

Dr Brown’s Administeria Dr Brown’s Administeria

www.tuxradar.com June 2009 LXF119 63

Last month I talked about Deb files. We saw that they
are the unit of packaging of software on Debian and
Debian-based Linux distributions such as Ubuntu. We

looked at the internal structure of a Deb file and learned how
you can build your own. (If you missed that issue, scoot over
to your local newsagent and bribe him for a back copy.)

This month, we’ll turn our attention to Debian repositories.
A repository is a collection of Deb files stored within a specific
directory structure and with an accompanying package index
file. Usually, the repository is made available via a web server
(ie via HTTP), though it’s also possible to have repositories
that live in the filesystem, for example through an NFS mount
from a server, or from a CD.

Packages in pockets
Ubuntu uses a two-level logical grouping of packages, which
is directly reflected in the directory structure of the
repositories. The upper level categories are called ‘pockets’,
although you’ll also hear them referred to as ‘distributions’.
For Ubuntu Hardy Heron, the pockets are:

 hardy This is the base product. It’s frozen at the time of
release of Ubuntu, and it’s what you get on the CD.

 hardy-updates This pocket contains updates and bugfixes
for the Hardy release. You will not see new versions of
applications; the packages here are strictly updates to the
versions published at the time of release.

 hardy-security Similar to the hardy-updates pocket, but
for security-related updates.

 hardy-backports This pocket provides new versions of
already-released packages. For example, the hardy-backports
pocket contains version 1.5.10 of Arts (the Linux sound
system) whereas the Hardy base distribution has version
1.5.9. This pocket is maintained by the community.

If you’re using another Ubuntu distro, such as Intrepid
Ibex, the pockets will be named intrepid, intrepid-security etc.

Beneath each of those pockets lies a second layer of
organisation. Here, software is organised into four categories,
called components, based on the level of support that is
offered for the package, and its licensing terms:

 main These packages are fully supported by Canonical and
may be freely used under open-source licences. Canonical
provide security updates for these packages.

 restricted These packages are supported by Canonical but
aren’t available under open-source licences, although they
are usually free. The binary drivers released by video card
vendors fall into this category.

Debian repository structure
Debian/Ubuntu Confused about where your Deb packages come
from? Get to grips with how the repositories are organised.

 universe These packages are community-maintained open
source packages. They are not supported by Canonical, and
are not on the Ubuntu CD. This is the largest category.

 multiverse These packages typically have restrictive
licences and may require registration or payment of a fee
before use.

Debian includes a set of tools for interacting with these
repositories, known collectively as the Advanced Packaging
Tool (APT). This tutorial is not about APT; to learn more you
should at least look at the man pages for apt-get and apt-
cache. APT uses the configuration file /etc/apt/sources.list
to tell it where its repositories are. The structure of the entries
in this file reflects the pockets-and-components organisation.

Repository structure
You can look at the structure of a real repository by browsing
to http://gb.archive.ubuntu.com/ubuntu. If you drill down
from there you’ll uncover a directory structure like the one
I’ve sketched. The left-hand side of this (under dists) directly
reflects the pocket, component and architecture structure
we’ve discussed, but the Deb files themselves are not here.
Instead you’ll just find files called Packages.bz2. (These are
the files that are fetched and cached locally when you do
sudo apt-get update).

The actual Deb files are under the pool directory, which is
broken down by component (but not by pocket or by
architecture). To keep the structure manageable there’s an
extra layer of directories called a, b, c and so on. The
Packages.bz2 files provide the link between the two
branches of this hierarchy, relating the package name to the
filename within the pool. Pooled repositories avoid duplication
of Deb files that are common across multiple architectures or
distributions. You’ll see a similar structure on the Ubuntu CD,
though only for the main and restricted components.

 The structure of the Ubuntu repositories. Package
managers automatically choose the appropriate
packages for the architecture they’re running on.

 The
filesystem
layout of
an Ubuntu
repository. Only
a few sample
directories are
shown.

 A single line from /etc/apt/sources.list. These entries
map pockets and components on to server URLs.

REPOSITORY

hardy-updates

main

amd-64 i386

restricted universe multiverse

hardy hardy-security hardy-backports

Pockets

Components

Architectures

deb http://gb.archive.ubuntu.com/ubuntu/ hardy-updates main restricted

The type of package The URL of the server The pocket The components

dists

hardy

main

binary-i386

packages.bz2

universe

gb.archive.ubuntu.com/ubuntu

.deb files here

binary-amd64 abiword aide adduser

multiverse restricted universe a b c

hardy-security main multiverse restricted

indices pool project

Package: abiword-common
Filename: pool/main/a/abiword/abiword-common....deb

LXF119.sysadmin 63 17/4/09 12:36:29

“We’re assuming that
servers closer to you give
better performance.”

Dr Brown’s Administeria

64 LXF119 June 2009 www.linuxformat.com

Dr Brown’s Administeria

The easiest way to start serving Debian-style
repositories is to set up a machine as an APT proxy.
The package apt-proxy will do this for you. To quote

the man page:
“Apt-proxy is a Python program designed to be run as an

standalone server via twistd, and provides a clean, caching,
intelligent proxy for apt-get, which speaks HTTP to apt-get
clients, and HTTP, FTP or rsync to the back-end server(s).
Apt-proxy listens by default on port 9999”.

Here’s how it works. The client machines on your network
are configured to go to your proxy for their repositories, not to
the ‘real’ servers. The first time the proxy is asked for, say, the
Banshee package, the proxy will go out to the back-end server
to get it. The proxy then delivers it to the client and caches it

locally. When
some other
client asks for
the same
package, it will
be delivered
from the

cache. Obviously, a caching proxy like this works well if it has
many clients behind it that are likely to be installing the same
stuff, for example, if they are all configured to download
security updates.

By default, apt-proxy builds its cache in /var/cache/apt-
proxy, though this location is configurable in the apt-proxy
config file.

Making it work
Here’s what I did to get apt-proxy up and running on my
Ubuntu 8.04 server:
1 Installed the apt-proxy package:
$ sudo apt-get install apt-proxy
2 Tweaked the apt-proxy config file (/etc/apt-proxy/apt-
proxy-v2.conf). The main thing here is to set the entries that
define where the back-end servers are. I changed only a single
line – just below the [ubuntu] section marker, I changed the
backends definition to that of a geographically local server, so
that the line looked like this:
backends = http://gb.archive.ubuntu.com/ubuntu

Reflected glory
Proxies and mirrors bring your Debian or Ubuntu repositories
closer to home and speed up software installation.

It would work fine even without this change, but we’re
assuming that servers that are physically closer to you will
give better performance. It is not clear to me that this is
always the case!

There are other things in the config file that you might
want to adjust, for example the port number that the server
will listen on, and the directory where apt-proxy will keep its
cache, but I left all of these at their default settings.
3 Restarted the apt-proxy server:
$ sudo /etc/init.d/apt-proxy restart

That’s it for the server.
Next, I had to make sure that my client machines used my

new proxy instead of going directly to the ‘real’ servers. So, I
edited the /etc/apt/sources.list file, changing every
reference of gb.archive.ubuntu.com to 192.168.1.65:9999.
Here, 192.168.1.65 is the IP address of my apt-proxy server,
and 9999 is the port number it’s listening on.

After this, you should run:
$ sudo apt-get update

on the client to refresh the package information. As a side-
effect, the proxy will download and cache this information.

Does it work? Well, outwardly things should behave pretty
much as they did before. As a test, I installed the package
bind9 on a client:
$ sudo apt-get install bind9

The output from apt-get includes this line:
Get: 1 http://192.168.1.65 hardy-updates/main bind 9 ...

… which shows that it really is using the proxy, and if you
examine the apt-proxy log file on the server, you should see
(among other things!) entries something like:
[CacheEntry] start download:pool/main/b/bind9/bind9....deb
[CacheEntry] file_sent:/var/cache/apt-proxy/ubuntu/pool/
main/b/bind9/bind9....deb

Finally, if you look in the directory /var/cache/apt-proxy/
ubuntu/pool/main you should see that the bind9 Deb file is
now cached. In fact, apt-proxy is beginning to build a directory
structure that matches the one on the real servers. The
second time you install bind9 on a client, the file will be served
from this cache.

 Apt-proxy
fetches the Deb
file from the
back-end server
first time
around and
subsequently
serves it from
the cache.

Local network

The proxy listens on port 9999
using the HTTP protocol

Subsequent requests are
served from the cache

The fi rst request is fetched from the back-end

Cache is in /var/cache/apt-proxy

. . . and is cached locally

APT-Proxy
Server

Back-end
Repositories

Here are the four APT commands I find most useful:

1 Refresh the package metadata from all the
repositories listed in sources.list. You should do this
periodically, and certainly after editing sources.list:
$ sudo apt-get update.
2 Install the package foo and any other packages

needed to make foo work:
$ sudo apt-get install foo.
3 Search the package metadata cache for all packages

related to astronomy:
$ apt-cache search astronomy.
4 Show the package metadata for one specific package:
$ apt-cache show celestia.

APT for the impatient

LXF119.sysadmin 64 17/4/09 12:36:31

“It’s not hard to create a
repository and populate
it with your own Debs.”

Dr Brown’s Administeria Dr Brown’s Administeria

www.tuxradar.com June 2009 LXF119 65

Reflected glory

 Mirroring is potentially an expensive operation. It
makes a local copy of the entire back-end repository.

If you have been using APT stand-alone to install packages
on your server, you will find that the Deb files you installed
have all been cached in /var/cache/apt/archives. You can
import these into your apt-proxy cache using the script apt-
proxy-import, which is also part of the apt-proxy package.

Create a mirror
The next step up the repository ladder, so to speak, is to
mirror the existing repositories. The difference between
proxying and mirroring is that a proxy only holds local copies
of Deb files that it has previously been asked to provide,
whereas a mirror actively downloads content to provide a
complete local replica of a specified collection of repositories.

I feel that some sort of don’t-try-this-at-home-folks
warning is appropriate here. Maintaining a mirror is going to
fill up several tens of gigabytes of disk space and use a lot of
bandwidth while the mirror is being populated – so don’t
build your own mirror unless you have at least a few client
machines that will benefit from it!

To create a Debian mirror, start by installing the package
apt-mirror. The config file /etc/apt/mirror.list defines the
repositories you want to mirror and should be adjusted to
point to the appropriate repositories for the country you live
in. I changed all occurrences of archive.ubuntu.com to gb.
archive.ubuntu.com, so that a typical entry looks like this:
deb http://gb.archive.ubuntu.com/ubuntu
hardy main restricted universe
multiverse

I also decided not to mirror the source
archive, so I commented out the lines
beginning deb-src. You might also want
to adjust the nthreads parameter in this
file. This determines how aggressively apt-mirror will operate.
I set it to 2. Now you can start to populate the new mirror:
$ sudo apt-mirror
Downloading 33 index files using 2 threads...
Begin time: Sun Jan 18 09:51:25 2009
[2]... [1]... [0]...
End time: Sun Jan 18 09:52:03 2009
Proceed indexes: [PPP]
25.4 GiB will be downloaded into archive.
Downloading 28204 archive files using 2 threads...
Begin time: Sun Jan 18 09:52:08 2009
[2]...

This will begin to download the mirror into /var/spool/
apt-mirror/mirror/gb.archive.ubuntu.com/ubuntu.
Clearly, it will take a little while…

With the mirror populated, we need to make it available to
our clients. One way might be to export the mirror from the
server using NFS. This approach might work well if your
mirror and your clients are all on the same LAN. Alternatively,
you can install a web server such as Apache and serve the
repository through that.

I decided to go the NFS route. Assuming you have an NFS
server installed, you can export the mirror by adding a line to
/etc/exports on the server something like this:
/var/spool/apt-mirror *(ro)

then run:
$ sudo exportfs -a

On the clients, create a suitable mount point (I chose
/repos) and mount the mirror:
$ sudo mkdir /repos
$ sudo mount 192.168.1.65:/var/spool/apt-mirror /repos

Now, we need to tell our clients to use the mirror instead of
the upstream servers. On the clients, edit the file /etc/apt/

sources.list and change all the lines that refer to the
upstream servers. For example, a line that might previously
have read:
deb http://gb.archive.ubuntu.com/ubuntu hardy universe

should now read
deb file:/repos/mirror/gb.archive.ubuntu.com/ubuntu hardy
universe

This change will need to be made for all the repositories
that you are
mirroring.

Now,
update the
package
information on
the clients:

$ sudo apt-get update
and you should be all set!

Roll your own
If you have locally developed packages you’d like to distribute
within your enterprise, it’s not hard to create your own
repository and populate it with your own Debs. You’ll need to
have a web server installed, and you’ll need to set up a
directory structure under your web server’s ‘document root’
broadly similar to the one in the main Ubuntu repositories
(see page 63), and copy your Deb files in. With the Debs in
place, the utility dpkg-scanpackages can be used to build the
Packages.gz file. It generates uncompressed output on its
standard output so you’ll need to pipe into gzip or bzip2 and
send the output to the right file.

Well, I’m out of space, and must apologise to those Debian
enthusiasts who are whispering urgently in my ear: “Tell ’em
about feature X”, for various values of X. LXF

Mirror

The mirror is fully populated from the
back-end repositories

All requests are served
from the mirror

Back-end
repositories

Local network

 For more on using apt-proxy, see www.subvs.co.uk/apt-proxy_on_ubuntu or
https://help.ubuntu.com/community/AptProxy.

 For more on mirroring, see www.howtoforge.com/local_debian_ubuntu_
mirror or http://popey.com/Creating_an_Ubuntu_repository_mirror_with_
apt-mirror.

 The business of building your own repository is well described at https://help.
ubuntu.com/community/Repositories/Personal.

 The Debian Policy Manual is an interesting (if slightly formal) read. Go to
www.debian.org/doc/debian-policy.
Or of course you could also read the man pages on apt-get, apt-cache, apt-proxy,
apt-proxy-import, apt-mirror.

Where to learn more

LXF119.sysadmin 65 17/4/09 12:36:33

