
90     Linux Format May 2009

Tutorial Greasemonkey

Juliet Kemp
is a sysadmin and
writer who spends
a large portion of
her time on the
web and is quite
often hit by the
urge to stick a
spork in her eyes.
Greasemonkey
helps avoid this
happening.

Our
expert

///DESIGN NOTE///

__word__ used to indicate bold (e.g. for
code snippets or directory/file names).

word used to indicate emphasis/italic

Part 1 My First Greasemonkey Script

Greasemonkey:

Tutorial: Make the web less
irritating with Greasemonkey

The web is a wonderful thing, but sometimes it doesn’t work exactly as 
you want it to. Juliet Kemp and Greasemonkey can help you fix that.

 The New User Script dialog in all its blank glory. Enter as
much information here as you can for an easier future.

T
he idea behind Greasemonkey is pretty simple. It’s
a Firefox extension, installed in the same way as
any other Firefox extension (find it via the Tools >

Addons menu and hit Install). However, it doesn’t do
anything in and of itself: what it does is to enable you to
run scripts, either by other people or by yourself, which
will alter the way webpages look and function.

Greasemonkey user scripts are the bits of code that
actually do the work – Greasemonkey itself just loads and
manages these. User scripts are written in JavaScript, but
be warned: for security reasons, this isn’t just a question
of writing regular JavaScript and away you go. There are
some gotchas to be aware of, although the scripts in this
tutorial don’t encounter any of them.

A quick note if you’re unfamiliar with JavaScript: this
tutorial isn’t going to explain JavaScript syntax in any
detail, but don’t let that stop you from giving it a go. It’s all
fairly logical and the code snippets are all explained.

To install a script that someone else has written, you
navigate to its location in Firefox and click on the link to
the script. You’ll get an install popup, as with a normal
extension, and can either look at the source code of the
script first or, if you’re feeling trusting, just install it.

Greasemonkey provides a helpful dialog to make writing a
script as straightforward as possible. In your Firefox window,
once Greasemonkey is installed, there’ll be a little monkey
face in the right-hand corner of the status bar. Right-click on
that and you’ll get a menu that includes the option “New User
Script”. Click that and you’ll get a dialog looking a bit like the
box on the right.

The ‘name’ is just the name of your script – it’s best to
choose something that obviously indicates what it does, for
ease of script management later on. The ‘namespace’ is to
avoid your script clashing with others. If you try to install a
script that has the same name as an already-installed one, it’s
the namespace that governs whether it will overwrite the old
one (if the namespace is the same) or co-exist with it (if
they’re different). There are a couple of things you can do
here: the first one is to use your own website as the domain
name. Alternatively, you can use http://localhost, or if
you’re intending to upload it to http://userscripts.org when
you’re done, you can use that. Current versions of
Greasemonkey won’t allow you to leave it blank.

‘Description’ is for a human-readable line describing what
the script does. It’s a very good idea to fill this field in, even for
your own scripts – you may wind up with stacks of the things
and they’ll be a lot easier to manage if you provide extra clues
about which is which.

LXF118.tut_grease 90 12/3/09 1:06:23 pm

May 2009 Linux Format     91

 Greasemonkey Tutorial

If you missed last issue Call 0870 837 4773 or +44 1858 438795.

: Hack the web

When writing your
include rules, using
the Magic TLD
syntax .tld will
match against any
top-level domain
(including a list of
two-level domains
intended to match
.co.uk and so
forth). So example.
tld would match
example.com,
example.co.uk,
example.org,
and a whole set
of other domains.
However, for
security reasons,
this shouldn’t be
used if your script
deals with private
information.

Quick
tip

 An HTML document as a DOM tree – each child node
branches down from its parent node.

 The page with a horrible background and with a nice
white background. Note the little monkey face in the
bottom right-hand corner!

The ‘include’ and ‘exclude’ rules govern on which sites a
script will run, and can include wildcards. So, www.example.
com/* will match www.example.com/ and all pages starting
with that URL (whereas www.example.com/ without the
asterisk will just include the front page). You can also use
wildcards for parts of names: http://*.example.com/f* will
match any page whose path begins with f, on any server in
the example.com domain. By default, the include box will
contain the page you were on when you clicked the new script
option, but you’re free to delete that. If an include rule is
matched and no exclude rule is matched, the script will run. If
you have no include rule, Greasemonkey assumes @include
*, ie, that every URL is matched, so the script will run on every
page you load.

This first script is going to set the background of a page
to white – very useful indeed if you come across a page
whose author has a fondness for eyeball-searing pink, or
the sort of repeating background image that generates a
headache within seconds. So pick a website you want to
change the background of and put it in the @include box
(here I’m using www.example.com), and set the other fields
as appropriate.

Once you’ve filled this in, you will be asked for your
preferred editor (if there’s not already one set), and then
Greasemonkey will load the script file – which currently will
just contain the metadata – up in your editor, ready for you to
write something.

At this point, the code you’re faced with will look a fair bit
like this:
// ==UserScript==

// @name Background Change

// @namespace http://www.example.com/~juliet/

// @description Change the background colour of a page

// @include http://www.example.com/*

// ==/UserScript==

Now it’s time to actually write the script. All this first script
does is to change the background colour of any pages from
sites in the include domain to white. (There really are some
unpleasant background colour choices out there.) For a page
without frames or other complications, this is very
straightforward: just a single line.
document.body.style.background = “#ffffff”;

document is the built-in way of referring to the current page.
It’s a DOM (Document Object Model) object that represents
the entire HTML document. Think of this as a tree of HTML
elements seen as objects, with each new element branching
off as a ‘child’ of the one before it – have a look at the diagram
above-right, which shows a possible structure for the body
part of an HTML document.

The notation for referring to an object in this model is
toplevel.child.childofchild. So this line takes the document,
then the body element, then the style of the body, then the
background attribute of the style… and sets it to white.

(#ffffff is white in hexadecimal notation, which is one of the
HTML standards. You could also just use white.)

Try it out now – pick a page with a non-white background,
use the Manage Scripts menu to add that to the includes for
your script and reload the page. When testing, remember:
you’re not actually doing anything to the web page you’re
editing. You’re just changing it for you. So if you do something
catastrophic, no problem! You can just turn your script off, or
edit it and reload the page. So feel free to experiment.

When you’re testing, if you left-click on the little monkey
face, it’ll toggle Greasemonkey on/off. So you can toggle it off,
check how the page looks currently, toggle it on, reload and
see what your script is doing.

Paragraph text
here

Subheader text
here

Another paragraph
here

Header text here

P

DIV DIV

BODYHEAD

P

H1

H2

HTML

LXF118.tut_grease 91 12/3/09 1:06:24 pm

92     Linux Format May 2009

Tutorial Greasemonkey

Part 2 Set CSS styles

Part 3 Alter specific elements

Never miss another issue Subscribe to the #1 source for Linux on p102.

As shown in the
DOM diagram
earlier, a ‘child’ of
an HTML element
is an element
that’s contained
within another
one. Imagine the
document as a big
tree, with every
open-tag (eg <p>
starting a new
branch, and every
close-tag (eg </p>)
closing that branch.
Self-closing tags
(eg
) make
a branch, but can’t
have any children.
So you could
restrict your search
within a particular
paragraph or
div section.

Quick
tip

 The Manage User Scripts dialog. You can edit the include/
exclude rules here without needing to open the script up.

This script won’t, however, work with frames; it’ll only change
the main body background style. If your eye-bleedingly
backgrounded page has frames, your best bet to hit all of
them is to insert a CSS style that overrides the existing one.
To edit the existing file, right-click the monkey face and
choose ‘Manage User Scripts’. Select your script and click Edit
to bring it up again in your chosen text editor. While you’re
testing, you don’t need to close the editor or the Manage User
Scripts dialog – just save the file and try reloading the page.
function addCss(cssString) {

 var head = document.

getElementsByTagName(‘head’)[0];

 return unless head;

 var newCss = document.createElement(‘style’);

 newCss.type = “text/css”;

 newCss.innerHTML = cssString;

 head.appendChild(newCss);

}

addCss (

 ‘* { background-color: #ffffff ! important; }’

);

The first function (addCss) sets up a way of adding a
global CSS file to the page. As before, document refers to
the current page, but in this instance we’re using the
getElementsByTagName function (which does what it says
on the tin) to get the first head element. For those of you who
aren’t entirely familiar with CSS: you set your CSS up in the
head section of an HTML file, so we need to get that element
to act as a parent to our new CSS element. There’s an error-
catching line in there (return without doing anything if there’s
no head section), then the script creates a style element and
gives it the text/css type. The line
newCss.innerHTML = cssString

is where the function takes whatever is passed into it, and
pastes that into the style element. Then the fully created style
element gets added to the head element and we’re done.

The final couple of lines are the bit that actually call the
function, with the argument that sets the background colour

– this goes where cssString is. Note: those are regular
brackets (), because you’re calling a function, not setting one
up. The ! important flag ensures that your CSS styles
override those of the page itself.

Effectively, what this does is to add these lines to the
header of your HTML page:
<style type=”text/css”>

 background-color: #ffffff ! important;

</style>

You can use this technique to set your own CSS
preferences for anything else – just make that CSS string,
when you call the addCss function, say what you want, eg:
addCss (

 ‘* { background-color: #ffffff ! important;

 text-align: center ! important;

 color: black ! important; }’

);

to make the background white, and all the text centred and
in black.

OK, so now you can change a single style aspect by changing
the DOM object, or alter lots of style aspects by putting in
your own CSS; and you can make that site-specific via the
include/exclude rules that are built into Greasemonkey. What
about when you want to find a particular type of element that
occurs multiple times on a page, and alter it? For example,
maybe you’re using a forum where sometimes people have
non-work-friendly user icons, so you want to just replace all
the images with a nice safe image that you have somewhere
on your own webspace. So, first of all, let’s find all the images
on the page:
var allImgs,thisImg;

allImgs = document.evaluate(‘//img[@src]’,

 document,

 null,

 XPathResult.UNORDERED_NODE_SNAPSHOT_TYPE,

 null);

The good bit here is the document.evaluate method.
Getting the hang of this will give you an enormous amount of
power. The first parameter (’img[@src]’) is an XPath query
(of which more in a moment); the second is the element that
you want to search. In this case that’s the whole document,
but you could restrict it further, and the query will only look
through elements that are children of that element. The third
parameter is a namespace resolver function, which is only
relevant to application/xhtml+xml type pages.

The fourth parameter is how you want your results
returned. The type here gives them back in random order,
which is usually fine; if for some reason you want them back
as they occur in the page, use XPathResult.ORDERED_
NODE_SNAPSHOT_TYPE instead. The final parameter
allows you to merge query results – pass in the result of a
previous document.evaluate call and it’ll merge the two
together. Feel free to experiment with this!

LXF118.tut_grease 92 12/3/09 1:06:25 pm

May 2009 Linux Format     93

 Greasemonkey Tutorial

Part 4 Replace text

Debugging fun

In an ideal world, everything you ever 
write would work exactly as planned 
first time. Good luck with that.

For those of us who occasionally 
don’t get it right the first time around, 
here are a couple of debugging tools 
to help you out:

1 DOM Inspector and InspectThis – 
available as add-ons for Firefox 3. The 
DOM Inspector (started from the Tools 
menu once you’ve installed it) enables 
you to take a look at the Document 
Object Model of a page – the structure 
of the page. InspectThis allows you to 
look at a particular page element by 
right-clicking on it and choosing 
“Inspect Element” from the context 
menu. Use both of these to get 
information about what node names 

and IDs you’re looking for on a page. 
You can also get other information (eg 
CSS styles and JavaScript info) from 
DOM Inspector.

2 Error Console (Firefox Tools
menu). This displays all script errors 
since you opened Firefox – hit Clear to 
get rid of them, then refresh the page 
with your non-functional script. If it’s 
crashing, you’ll get an error message. 
(Ignore the line number – it won’t 
match your script because of the way 
in which user scripts are injected into 
the page – and just use the error 
message instead.)

3 Logging with the Greasemonkey
GM_log function. These log messages 
will show up in the Error Console.

The original version
of Greasemonkey
had some major
security holes,
arising from the
way in which it
injected user
scripts directly into
webpages, which
could enable
malicious pages to
get access to your
scripts. These days,
Greasemonkey
operates differently,
effectively running
everything in a
sandbox and using
wrappers to access
objects on the
remote web page
that your script
wants to alter.

Quick
tip

The XPath query (the first parameter) is the powerhouse
of this function. XPath is a powerful XML query language
which is built in to Firefox and which you can therefore use
from within Greasemonkey. If you want to find a particular set
of elements, you could crawl through the DOM tree, retrieving
sets of nodes and searching through them for whatever it is
you’re after. However, this is pretty slow and a bit ugly in
terms of code. XPath gives you a quicker and cleaner way of
finding pretty much anything you care to specify in a web
page. I’ll use it in a couple of scripts here, which will hopefully
give you an idea of how it works – check out the specification
online or one of the available tutorials if you want to know
more about this. It’s really very flexible: if you can think of a
set of results you want to get out of an HTML document, you
can probably construct an XPath query that will return them
for you.

Back to our script: now you’ve got your images, you want
to do something with them. This next piece of code goes in
the same script, after the bit above:
for (var i=0;i<allImgs.snapshotLength;i++) {

 var thisImg = allImgs.snapshotItem(i);

 var src = thisImg.src;

 var srcMatch = src.match(‘^http://www.example.

com/forums/userpic/’);

 if (srcMatch != null) {

 thisImg.src = ‘http://www.example.com/~juliet/safepic.gif’;

 }

}

Next up, let’s take a look at replacing text that occurs
anywhere in a webpage. Perhaps you are particularly fed up
with the word “incentivize” occurring repeatedly in your
corporate homepage, which, distressingly, you are required to
look at on a regular basis. Let’s replace it with “pling” instead
(or any other word you find mildly amusing, rather than
eyeball-spork-inducing).
// ==UserScript==

// @name Deincentivize

// @namespace http://www.example.com/~juliet/

// @description Replace “incentivize” on corporate homepage

// @include http://www.example.net/corporatehome

// ==/UserScript==

textNodes = document.evaluate(

 “//text()”,

 document,

 null,

 XPathResult.UNORDERED_NODE_SNAPSHOT_TYPE,

 null);

var searchRE = new RegExp(‘incentivize’,’gi’);

var replace = ‘pling’;

for (var i=0;i<textNodes.snapshotLength;i++) {

 var node = textNodes.snapshotItem(i);

 node.data = node.data.replace(searchRE, replace);

The first section of code should be familiar from our
earlier script. It looks for any text nodes in the document.
Next we set up the regular expression. The constructor new
RegExp() takes two arguments. The first is the string that
you’re looking for. The second is the modifier. g means global
match – replace every occurrence of the string, not just the
first one. (Most of the time, you’ll want to use this.) i makes
the match case-insensitive. There’s also m for multi-line
mode, which makes the start-of-line and end-of-line anchors

(^ and $) match before and after newlines rather than
matching the ends of the text in the node.

Finally, there’s another for loop to do the real work of going
through the XPath query output, looking for our search string,
and replace it with our replace string. Easy!

There’s a vast amount more you can do with
Greasemonkey – the key is to start experimenting and see
what changes you can make. Have fun remoulding the web to
your own preferences! LXF

snapshotLength and snapshotItem are provided methods
that work on the result of a document.evaluate call and give
you, respectively, the total number of items returned, and a
particular item. So you can stick both of those into a for loop,
as here, and iterate over every result (here, every image on
the page) returned by your XPath query.

A quick note: in regular JavaScript, you could iterate over
this collection like so:
for (var thisImg in allImgs) {

 // do stuff

}

Because of the way that Greasemonkey implements script
security, this won’t work in a Greasemonkey script. You need
to do it the long way around.

thisImg.src gives you the value of the src attribute of the
image. So if your image tag were ,
thisImg.src would return foo.jpg. (You can access the
width or height attributes, or any other img attribute, with a
similar syntax. Check out DOM object references online for
more information.)

The final section tries to match the src value with the
value expected for userpics on this forum (to find this for your
own forum, you would need to take a look at the source code
or a page of it), and if the result is non-null (indicating that
there is a match), it replaces the image src value with your
safe image. (You could write this in one fewer line by putting
the src.match call in there directly, but this is a little easier to
read.) And we’re done!

LXF118.tut_grease 93 12/3/09 1:06:26 pm

