
100     Linux Format April 2009

Tutorial Google App Engine

 Google App Engine
SDK 1.1.8

application: mydemoapp

version: 1

runtime: python

api_version: 1

handlers:

 - url: /.*

 script: main.py

This tells App Engine that your application is called
mydemoapp and that all requests should be passed to
main.py. You can set any script to handle any URL, and you
can even use patterns in the configuration to use different
files in your app:
url: /browse/(.*?)/

script: /listings/\1.py

The configuration above passes everything to main.py, so the
next step is to create this file and add the usual message:
print “Hello, World”

With this modest application ready to go, fire up the
development server using dev_appserver.py and point your
browser at http://localhost:8080.
dev_appserver.py ~/myapp/

You can use most standard Python expressions within App
Engine, with a few exceptions that mostly relate to filesystem

GAE: Deploy a w

Hardcore Linux Challenge yourself
with advanced projects for power users

Google App Engine enables you to build scalable apps without worrying about 
scaling details. Dan Frost looks at how to get your first cloud app off the ground.

Start by working locally using a developer server – dev_
appserver.py – which simulates the live environment. This
environment, provided by the software development kit, gives
you a working server, data storage, simulated user accounts
and pretty much everything else you need to develop your
app. Once you’ve made your latest Web 2.0 masterpiece,
deploy the application to Google’s servers using appcfg.py,
which uploads the app to your App Engine account. (Create
an account at http://appengine.google.com.)

It’s now time to install the development environment.
You’ll need Python 2.5 installed, after which you can
download App Engine for your OS from http://code.google.
com/appengine/downloads.html. For Linux, unzip and add
App Engine to your $PATH:
export PATH=$PATH:/path/to/google_appengine/

Check this worked by typing dev_appserver.py on the
command line – you should get the usual page of help
messages. Now create a directory for your application:
mkdir ~/myapp/

Next, create the key file for App Engine: app.yaml. This
file tells App Engine where in the directory to find your
application and how to treat each file. Create ~/myapp/app.
yaml containing:

Last month We used Git to manage distributed software versioning.

Dan Frost
is technical
director of 3ev, a
Brighton-based
web development
agency. He has
developed for the
TYPO3 CMS
project and is
currently working
on the Involve
CMS application
for 3ev.

Our
expert

G
oogle App Engine is a platform for developing
applications on Google’s infrastructure. Like
other hugely scalable platforms, App Engine

gives you a way of deploying to the cloud without the
expense of running your own server farm.

Unlike other cloud computing solutions, Google App
Engine is specialised – it’s purely for building web
applications. You can serve pages, store information and
interact with external web servers, but you don’t have
access to files, disks and databases in the same way you
would in a normal environment.

While this does mean you might have to re-engineer
your application, you do have some very powerful tools to
work with. Google App Engine supports Google user
accounts, image manipulation, huge data stores and,
using the Google data library, interaction with several
Google data systems.

Google App Engine applications are currently only
supported by Python. If this isn’t your favourite
programming language, keep an eye out for support
coming to others platforms near you in the future.

Working with App Engine

LXF117.tut_adv 100 11/2/09 12:42:45 pm

April 2009 Linux Format     101

Google App Engine Tutorial

If you missed last issue Call 0870 837 4773 or +44 1858 438795.

access. Add some methods, classes, and even create
modules and you’ll find that the environment is quite familiar.

Using webapp
The App Engine environment comes pre-loaded with webapp,
an MVC framework that enables you to build well-structured
apps in just a few lines. Start by importing the framework with
the line and creating a handler, which in webapp is just a
simple class that extends webapp.RequestHandler:
from google.appengine.ext import webapp

class ExampleApp(webapp.RequestHandler):

 def get(self):

 self.response.out.write(‘Hello, well structured world’)

The request handler has two important methods – get()
and post(). Get is called for all HTTP GET requests, while
post is called for all HTTP POST requests. Below the request
handler, you need to register it with webapp and then run the
webapp main() method:
application = webapp.WSGIApplication(

 [(‘/’, ExampleApp)],

 debug=True)

 def main():

 run_wsgi_app(application)

 if __name__ == “__main__”:

 main()

Revisit your app’s URL and you’ll see a rather unimpressive
message. Let’s improve it by moving the message into a
template – create the file index.html:
<html>

<head><title>Hi there!</title></head>

<body><h1>Hello from the template</h1></body>

</html>

You then include this by altering the get() method:
def get(self):

 template_vars = {}

 self.response.out.write(template.render(path, template_

vars))

If you want to include stylesheets, JavaScript, images or
any other static files, you first need to tell app.yaml. Add the
following to the file, above the url: /.* handler:
- url: /style

 static_dir: style

Next, create a directory called style and then a file called
app.css before including it in index.html:
<link rel=”stylesheet” href=”/style/app.css” type=”text/css”>

Add some style to your CSS file – I’ll leave it for you to do
so as you see fit.

Saving models
Scaling databases is tricky, but Google has found some clever
ways of doing this that offer a different approach to traditional
relational databases.

Google’s BigTable is at the heart of App Engines’s data
storage system, which means that you can write applications
that can scale to millions of users and page impressions.
BigTable is a distributed storage system designed for
managing “petabytes of data across thousands of commodity
servers” (http://labs.google.com/papers/bigtable.html),
but getting started with it in App Engine is simple. It all starts
with models, which only take a few lines to create. All models
in App Engine are classes that extend db.Model, whose
properties are like fields in normal database tables. For
example, a simple model might consist of:
class MyNote(db.Model):

 thenote = db.StringProperty(multiline=True)

 date = db.DateTimeProperty(auto_now_add=True)

The date property is automatically set to the current time
thanks to auto_now_add, of which thenote is obviously a
string. Models can also contain boolean, integer, floats, blob,
emails and many other property types.

You don’t have to do anything else before using this – just
jump straight in by creating an instance of the class, setting
the properties and calling put():
note = MyNote()

note.thenote = “Just a quick note”

note.put()

For our example, we start by creating a model for storing
comments called Comment:

 web application
Google App Engine enables you to build scalable apps without worrying about 
scaling details. Dan Frost looks at how to get your first cloud app off the ground.

If you’re new to
Python, but still
want to try out
Google App Engine,
the first pitfall to
avoid is setting
your editor to use
spaces instead of
tabs. If you don’t,
App Engine will
give you all kinds of
colourful errors!

Quick
tip

 Shopping carts, memo pads and even SQL designers – to
see some of what’s possible, browse the featured apps.

Logging

Get into the habit of using logger – ‘import logging’ at the 
top of your app and then use logging throughout:
logging.info(“Something’s happening...”)

You can view logs via the dashboard – navigate to ‘Logs’ 
and drill down into the detail of each item.

LXF117.tut_adv 101 11/2/09 12:42:46 pm

102     Linux Format April 2009

Tutorial Google App Engine

class Comment(db.Model):

 content = db.StringProperty(multiline=True)

 date = db.DateTimeProperty(auto_now_add=True)

 author = db.UserProperty()

The next step is to get some data into this, list it and then
add some more interesting properties to it. In order to create
some comments, we need to create a form, save the data and
then display it. Start by adding the form to index.html:
<form action=”/” method=”post” accept-charset=”utf-8”>

 <input type=”hidden” name=”parent” value=”{{ comment.

key }}” />

 <textarea name=”comment”></textarea>

 <input type=”submit” value=”Add”></div>

</form>

Next, add the method post() to the controller.
def post(self):

 c = Comment()

 c.content = self.request.get(‘comment’)

 c.author = users.get_current_user()

 c.put()

 self.redirect(‘/’)

GQL is used to get data back out of the data storage and, in a

lot of cases, looks just like SQL. You need to replace the
contents of get() with a call to the Comment’s GQL method,
which you then pass to the template:
comments = Comment.gql(“ORDER BY date DESC “)

template_vars = {

 ‘comments’ : comments

}

self.response.out.write(template.render(‘index.html’,

template_vars))

Finally, you can loop through the comments to display the
content from each:
{% for comment in comments %}

 <p>{{ comment.content }}</p>

{% endfor %}

For neatness – and because you’re going to add
functionality later – move the comment line into another file.
Replace the second line above with {% include ‘comment.
html’ %} and create a file comment.html that contains:
<div class=”comment row1”>

<p>Posted on {{ comment.date }}

 {{ comment.content }} </p>

</div>

With the Google
Data Services you
can get lots of
Google’s data into
your apps. Start by
installing gdata in
your app directory
via http://code.
google.com/
appengine/docs/
usinggdata
services.html and
including it using
import gdata.

Quick
tip

Using users

 The dashboard
gives you access
to hits, usage
stats, logs and
old versions of
your app.

App Engine enables you to authenticate using existing
Google accounts, so your users don’t have to register for yet
another webapp. This is done using the users package:
from google.appengine.api import users

Now you can access a user’s nickname and email address
using functions such as users.get_current_user(). If the
user isn’t logged in, you can redirect to the login screen:
if users.get_current_user():

 user = get_current_user()

 self.response.out.write(“You are logged in as: “ + user.

nickname())

else:

 self.redirect(users.create_login_url(“/home”))

The argument /home is the URL that you want the user to
come back to after logging in.

In the comments app, you can force users to log in before
adding comments by redirecting them to the login screen:
if users.get_current_user():

 comments = Comment.gql(“WHERE in_reply_to = :1

ORDER BY date DESC “, None)

 template_vars = {

 ‘comments’ : comments

 }

 self.response.out.write(template.render(‘index.html’,

template_vars))

else:

 message = (“Please login.” % users.

create_login_url(“/rels”))

 self.response.out.write(message)

Refresh the application in your browser to see the
authentication working.

With users logged in, store each comment’s author by
adding the following to the post() method before c.put():
c.author = users.get_current_user()

To display this, add some lines to comment.html that get
the user’s nickname and email address:
<p>Posted by:

{% if comment.author.nickname %}

 {{ comment.author.nickname }} ({{ comment.author.email }})

{% else %}

 Anonymous

{% endif %}

on {{ comment.date }}

</p>

Relating entities
Relationships between entities are made inside the model
using either ReferenceProperty, which refers to another
model, or SelfReferenceProperty, which refers to the model
itself. To link one model to another, do something like:
related_thing = db.ReferenceProperty(OtherThing)

If you want users to be able to reply to messages left on
your noticeboard, each comment needs a _parent_, which
we’ll call in_reply_to. Declare this using the following, added
to the Comment model:
in_reply_to = db.SelfReferenceProperty()

Never miss another issue Subscribe to the #1 source for Linux on page 6.

LXF117.tut_adv 102 11/2/09 12:42:46 pm

April 2009 Linux Format     103

Google App Engine Tutorial

Next month Stop processes hogging your precious bandwidth with Trickle.

 You can browse entities created by your users via the
dashboard, so you can find out how the app is being used.

 You can pull all
sorts of Google
data into your
GAE app: Base,
Calendars,
Documents,
Contacts,
YouTube and
much more.

Indexes

Like any database-driven application, when things start to 
get big you need to add indexes. This is done via index.
yaml in your project, which will be created for you. You’ll 
need indexes when you start sorting entities, filtering over 
groups of entities and more complex queries. Start here: 
http://code.google.com/appengine/docs/python/
datastore/queriesandindexes.html.

You can then add a form for each existing comment:
<div>

 <div id=”comment-{{ comment.key }}” style=”display :

none;”>

 <form action=”/rels” method=”post” accept-

charset=”utf-8”>

 <input type=”hidden” name=”parent” value=”{{ comment.

key }}” />

 <textarea name=”comment” rows=”7” cols=”30”></

textarea>

 <input type=”submit” value=”Add”>

 </form>

 </div>

 <a href=”javascript:document.getElementById(‘comment-{{

comment.key}}’).style.display=’block’;”>Add comment

</div>

… and then alter the post() method to save this:
if self.request.get(‘parent’):

 key_name = self.request.get(‘parent’)

 p = db.get(db.Key(key_name))

 c.in_reply_to = p

else:

 c.in_reply_to = None

The ‘parent’ value from the HTML form is passed into the
post() method and then the db.Key() method is used to find
the object from the data store. If you view the HTML source,
you’ll see the keys are long strings rather than integer keys.

If you try replying to a comment, you’ll see the replies
appear at the bottom of this, so your next step is to display
the comments hierarchically. You need to update the GQL,
add a comment.html and add a method to the Comment
model. Starting with the model, add get_replies:
def get_replies(self):

 comments = Comment.gql(“where in_reply_to = :1 ORDER

BY date DESC LIMIT 10”, self)

 return comments

This returns all the comments that are in reply to to the

comment object self. The top-level comments should be
those that don’t have in_reply_to filled in, so we change the
GQL in get() using Python’s None constant:
comments = Comment.gql(“WHERE in_reply_to = :1 ORDER

BY date DESC “, None)

If you refresh now you’ll see that only the top-level
comments are displayed. The last step is to make comment.
html hierarchical:
<p>

 {% for comment in comment.get_replies %}

 {% include ‘comment.html’ %}

 {% endfor %} </p>

Refresh to see the comments nested. Click on ‘Add
Comment’ to reply to any of the comments.

Uploading your app
Uploading is done using the second CLI tool, called appcfg.
py. All you need to do is set the options for update and the
location of your app.
~/appEngineProject/ $ appcfg.py update helloworld/

Loaded authentication cookies from /Users/you/.appcfg_

cookies

Scanning files on local disk.

Initiating update.

Email: some_user@gmail.com

Password for some_user@gmail.com:

Saving authentication cookies to /Users/you/.appcfg_cookies

Cloning 21 application files.

Uploading 5 files.

Closing update.

Uploading index definitions

You’ll be asked for your Google account details, and then the
app will be uploaded to Google’s servers. LXF

LXF117.tut_adv 103 11/2/09 12:42:47 pm

