
Dr Brown’s Administeria

Ubuntu has probably done more
than any other distribution to
broaden the appeal of Linux

and raise its profile as an easy to use,
intuitive distribution. But when
Canonical reaches its goal to entirely
banish the command line from the end
user’s experience of Linux, what will we
see? Some kind of better-late-than-
never version of Windows?

Linux has no need to apologise for the
way it is. Every time someone covers up
more of the command line with some
new graphical tool, they cover up more
of what attracted me to Linux in the first
place. I like the power of the shell, the
myriad of “tiny languages”, the flexibility
of using programs in combination, the
ease of scripting around the command
line tools and the simplicity of
documenting how to perform a task at
the command line compared with
graphical explanations.

Don’t get me wrong. I value the work
Canonical is doing. But in looking at its
slogan “Linux for human beings”, I found
myself thinking “Why shouldn’t Linux be
for geeks?” Even geeks are human
beings aren’t they?

On an unrelated note…
A report entitled “Linux Kernel
Development” from the Linux
Foundation highlights the breathtaking
speed and scale of development. Since
March 2005 there’s been a new kernel
release every 2.7 months on average,
with between 5,000 and 10,000
changes per release. The current kernel
(2.6.24) is approaching nine million
lines of code. The report concludes that
“The Linux kernel is one of the largest
and most successful open source
projects that has ever come about.”
Read the full text at www.
linuxfoundation.org/publications/
linuxkernel.development.php

Smart (Self-Monitoring Analysis and Reporting
Technology) is a technology developed by a
number of major drive manufacturers to

provide detailed diagnostic information about the
health of your hard drives. The idea is to improve
storage reliability by detecting indicators of
impending drive failure before you’ve suffered any
downtime or data loss. The idea isn’t new. HAL 9000,
you’ll remember, predicted the failure of the ship’s
AE35 parabolic antenna in 2001: A Space Odyssey,
though fortunately in the case of hard drives we don’t
have to struggle into our space suits to go out and fix
them. Open the pod bay doors, HAL.

For Linux, the package smartmontools from
Bruce Allen provides user-space monitoring of
Smart data. The program smartctl is the main
reporting tool. The screenshot shows an example of
the detailed reporting available using this tool. As

Esoteric system administration goodness from
the impenetrable bowels of the server room.

Dr Brown’s
Administeria

Geeks vs
humanity?

Predicting hard disk failure
Smart Is it possible to predict hard drive failure before it
happens? The facts about the technology.

you’ll see, Smart maintains various “raw”
performance measures, and normalises each one to
a value in the range of 1 to 200. For each normalised
value, the drive manufacturer sets a threshold, and if
the normalised value falls below the threshold, the
drive is considered likely to fail. At least that’s the
theory behind it all.

The second program, smartd, is a daemon that
polls the Smart reports from the drives (every 30
minutes by default) and logs any error or changes in
attribute values. In addition to logging to a file,
smartd can also be configured to send email
warnings if problems are detected. For more
information, see http://smartmontools.
sourceforge.net. You’ll find content of practical
relevance to either attack or defend instead of
getting information that is either confusing or just
plain wrong.

Dr Chris Brown
The Doctor provides Linux training, authoring and
consultancy. He finds his PhD in particle physics
to be of no help in this work at all.

Are Smart parameters really a good predictor of
drive failure? Three guys from Google presented a
paper at the fifth Usenix Conference on File and
Storage Technologies in which they investigated
failures over a population of 100,000 disk drives.
They found that there were some Smart
parameters that have a large impact on failure
probability, but that a large fraction of failed drives
had no predictive Smart signals. The paper is
available at http://labs.google.com/papers/
disk_failures.pdf.

How smart is Smart?

 Raw S.M.A.R.T. data from smartctl. I was
especially intrigued by the ‘head_flying_hours’.

62 Linux Format January 2009

LXF114.sysadmin 62 21/11/08 5:40:27 pm

January 2009 Linux Format 63

Dr Brown’s Administeria

Predicting hard disk failure

A ll Linux distributions use a file called /etc/fstab to control
the mounting of filesystems. This is an important file, and
mistakes here can even prevent the system booting. The

format of fstab used to be fairly straightforward, but the explosion
of different filesystem types, different mount options and different
ways of identifying partitions has made it more challenging. In this
back-to-basics tutorial, we’ll try to make sense of some typical
entries in fstab.

Each line in fstab is broken out into six fields as follows:
 Field 1 The device containing the filesystem. Exhibit A shows the

use of a simple Linux device name to identify a disk partition. More
recent Linux distibutions use disk labels or UUIDs to identify the
partition. If the mount refers to an NFS filesystem, this field
contains an entry such as docserver:/usr/share, which means
‘the directory /usr/share on the NFS server called docserver’. Or
if you’re using logical volumes, this field will contain a device
mapper name such as /dev/VolGroup00/LogVol00

 Field 2 This is the mount point. It’s usually the name of an
empty directory within the root partition.

 Field 3 This is the filesystem type. Linux potentially supports
many filesystem types; for a list of what’s currently available in
your kernel, look at /proc/filesystems.

 Field 4 This is where you specify the mount options. The set of
options available depends to some extent on what the filesystem
type is, and there are potentially lots and lots of them. See the
table “Mount Options” for more detail. If there are no options to be
specified, the word “defaults” appears here.

 Field 5 This field is all but obsolete. It is used by dump (an
incremental backup program) to indicate which partitions need to
be backed up.

 Field 6 This field gives some control over the order that
filesystems get checked (by fsck) at boot time. Standard practice
is to put ‘1’ here for the root partition and ‘2’ for all the others.

Fantasy filesystems
Not all the filesystems in fstab are real. Some of them are a
figment of the kernel’s imagination. In recent years, the concept of
a “file” has been broadened to mean any source of data (not
necessarily something stored on disk) that can be accessed using
the standard file I/O system calls, and so can be viewed via
standard commands like ls or cat. Perhaps the best-known of
these pseudo filesystem types is proc, which gives a view into
internal kernel data including subdirectories that provide “per
process” information.

fstab demystified
A handy illustrated guide to the syntax of the fstab file.

The entries we’ve seen so far define mounts that will be
performed at boot time, in response to a mount – a command
buried somewhere in a boot script. The diagram below shows an
entry for a removable device such as a CD. This line is not there to
define a boot-time mount, but to make mounting of removable
media easier. For one thing, it means you can mount a CD just by
typing a command such as
$ mount /dev/hdc

Let’s wrap up by taking a look at a few more mount options.
There are many, many more options than we’ve shown here. Take
a look at the man pages for fstab and mount, which are very
detailed indeed.

 ro Mount read-only. For example, if /usr is on a separate
partition, mounting it read-only will improve security by preventing
modification to binaries in /usr/bin and libraries in /usr/lib.

 noatime Prevents the updating of the “last access time”
timestamp of files under this mount point. Can improve
performance under certain conditions. Ubuntu uses the “relatime”
option, which is similar.

 sync Forces all writes to the filesystem to be synchronous (to be
flushed to disk immediately).

 nosuid This prevents the “setuid” and “setgid” attributes from
taking effect. It’s an option that’s often used on removable media.
It prevents Mr Bad Guy from getting root by turning up with a CD
containing, for example, a shell owned by root with the setuid bit
on it.

 The fields of
the fstab file.

The partition
device name

The filesystem
type

Indicates whether the
filesystem should be

backed up

The mount
point

Mount options
(“defaults” means
there aren’t any)

fsck pass
number

 /dev/sda2 /usr ext3 defaults 0 2

 fstab entry
for a removable
device.

Removable media usually
mounted under /media

no auto = don’t mount at boot time
user = allow non-root users to mount

 /dev/hdc /media/cdrom auto noauto,user 0 0

Typical device
name for CD

Tells mount to figure out the
filesystem format for itself

Do not fsck
removable media!

LXF114.sysadmin 63 21/11/08 5:40:28 pm

64 Linux Format January 2009

Dr Brown’s Administeria

Protect your data
Worried about the possibility of hard-drive theft? Keep data
from prying eyes by using these encryption methods

R ight, so you’re up to date with the security updates on your
servers. You’ve disabled direct root logins, set a Grub
password, and screwed down the firewall so tight that

even SSH packets aren’t allowed in until they’ve wiped their feet.
You feel pretty secure. And then a disgruntled employee wanders
into your server room with a screwdriver, removes your hard drive
and gets your entire corporate database. It’s not only servers that
are vulnerable; it’s likely your employees carry copies of company
confidential stuff on their laptops too. Laptops and memory sticks
are especially easy to steal. There have been enough high-profile
reports of data theft in the media over the last year or two to draw
attention to the dangers.

Don’t despair. There are ways to ensure confidentiality of data
even if the Bad Guy has your hard drive in his evil clutches. And
while the mathematics behind it all may be beyond most of us
(including me), putting encryption technology into practice is easy
enough. In this tutorial we’ll take a look at two different ways of
encrypting filesystems using Ubuntu.

Plan A: Encrypting the whole filesystem
In Linux-speak, a block device is a storage device that can be
accessed randomly, on a block-by-block basis. Block devices are
important because Linux uses them to build filesystems on, and
the most obvious example of a block device is a disk drive.
However, the Linux 2.6 kernel includes a device mapper layer that
allows the creation of virtual layers of block devices on top of real
block devices like disks. These virtual block devices can do

A few warnings

Do be careful – for either of the
encryption techniques we’ve discussed,
if you forget the relevant pass phrase,
your data is truly irrecoverable.
Forgetting a regular login password,
even root’s, isn’t really serious – it’s
easy enough to do some sort of rescue
boot and reset it. Forgetting your
encryption pass phrase is an entirely
different and more severe situation. You
are (if you’ll allow a rather technical
term) stuffed. I don’t know enough
cryptography or mathematics to work
out the numbers behind a brute force
attack, but I’m sure they’re
gigantic enough that I wouldn’t
want to rely on it as a way of
recovering an important
corporate database!

Secondly, if you’re in
the habit of carrying
your laptop
home in
hibernate or

sleep mode, so that Linux is still booted,
neither of our techniques offer any
protection at all. As long as the guy who
steals the laptop doesn’t reboot, or log
you out, he has full access to your data.
So, get into the habit of shutting the
laptop down entirely before abandoning
it on the luggage rack of the 18.06 from
Southend-on-Sea to Liverpool Street.

Finally, to end on a slightly grim
note, section 49 of the Regulation of
Investigatory Powers Act 2000 Part 3
(investigation of electronic data
protected by encryption etc) specifies

conditions under
which criminal
investigators can

legally require users
to give over their

encryption keys. But I
assume you would have

to have done something
really bad before that

would happen.

different things such as striping, mirroring, taking snapshots,
encryption and so on. Logical volume management (LVM) and
software RAID are both built as device-mapper layers.

Of particular interest here is the dm-crypt device mapper that
encrypts a virtual block device on to an underlying disk partition.
The technology has been in the kernel for a while, but with the
Alternate Ubuntu 8.10 CD, Canonical has made it much easier to
deploy. This CD does not provide a Live distribution, but uses a
more traditional, text-based installer. In particular, the partitioner
offers the option of putting pieces of your filesystem on encrypted
logical volumes.

The easiest approach is to select “Guided – use entire disk and
set up encrypted LVM” at the main partitioner screen.

Plan B: The ecryptfs stacked filesystem
Whole-partition encryption at the block device level (as I have just
described) certainly defeats the hard drive thief, but has a couple
of disadvantages. First, you need to supply the passphrase at boot
time, making unattended reboots impossible. Second, it’s not
obvious what to do about backups; for example, how do you make
incremental backups to untrusted remote backup machines? And
third, it does nothing to give individual users a nice warm fuzzy
feeling that their data is safe from the prying eyes of other users,
as all users’ files are protected using a single system-wide
passphrase. Once the system is booted, and the system
administrator has “unlocked” the encrypted partition, the system
behaves just as if it were a normal partition.

There is an alternative approach to encryption – the ecryptfs
filesystem – that does address these issues. Ecryptfs is a stacked
filesystem: it layers an ‘upper’ filesystem on top of an existing,
mounted ‘lower’ filesystem. The upper level provides the
unencrypted view of the files; the lower level is the encrypted view,
the one that is actually stored on disk. Sorry about the missing ‘n’
in the name by the way. I guess it has gone to join the missing ‘n’ in
‘umount’; I just hope they are having fun together!

Ecryptfs is registered as a virtual filesystem type within the
Linux kernel, and filesystems can be mounted by specifying a type
of ‘ecryptfs’ to the mount command. For example, if I do this:
cd /home/chris
mkdir lower
mkdir upper

conditions under
which criminal
investigators can

legally require users
to give over their

encryption keys. But I
assume you would have

January 2009

to have done something
really bad before that

would happen.

attack, but I’m sure they’re
gigantic enough that I wouldn’t
want to rely on it as a way of
recovering an important
corporate database!

Secondly, if you’re in
the habit of carrying

attack, but I’m sure they’re
gigantic enough that I wouldn’t
want to rely on it as a way of
recovering an important
corporate database!

Secondly, if you’re in
the habit of carrying

conditions under
which criminal
investigators can

legally require users
to give over their

encryption keys. But I
assume you would have

to have done something
really bad before that

would happen.
 Installing from the Ubuntu 8.10 ‘Alternate’ CD offers an easy

way to set up an encrypted filesystem.

LXF114.sysadmin 64 21/11/08 5:40:31 pm

January 2009 Linux Format 65

Dr Brown’s Administeria

sudo mount -t ecryptfs lower upper
I’ll end up with the unencrypted view (/home/chris/upper)
stacked on top of the encrypted view (/home/chris lower). You
can verify this using the mount command:
$ mount | grep ecrypt
/home/chris/lower on /home/chris/upper type ecryptfs
(rw,ecryptfs_sig=dbcc9a3da3399a69,ecryptfs_
cipher=aes,ecryptfs_key_bytes=16,)

With this mount in place, for each (plaintext) file that I create in
/home/chris/upper, a corresponding encrypted file will exist in
/home/chris/lower. For example:
$ echo “Attack at dawn” > upper/battleplan
$ ls -l lower upper
lower:
total 12
-rw-r--r-- 1 chris chris 12288 2008-10-09 13:40 battleplan
upper:
total 0
-rw-r--r-- 1 chris chris 15 2008-10-09 13:40 battleplan

There are a couple of things worth noting here. First, the file names
in the lower directory are the same as those in the upper directory.
This is perhaps not ideal… the enemy who steals my hard drive will

not find out what my battle plan is, but he will discover that I have
one, which is more than I might wish. Second, notice that the file in
the lower directory is much larger – there’s an overhead of
approximately 12 kilobytes on every file. The extra content at the
front of each lower file contains cryptographic metadata about the
file. Having this information in the file contents makes it
convenient to transfer or back up the files while preserving all the
information necessary to access them later, but it’s an overhead
you’ll need to keep in mind if you plan to have a large number of
very small private files.

Note that, when the ecryptfs mount is in place, ecryptfs will not
prevent other logged-in users from seeing your private files if the
access permissions on your “upper level” directory are too open.
Your private directory should be mode 700.

The Ubuntu way
In keeping with its motto of “Linux for human beings”, in Ubuntu
8.10 Canonical has tried to make ecryptfs as painless to use as
possible. There is a script called ecryptfs-setup-private that sets
everything up for a user, creating the upper and lower directories
(called ~/Private and ~/.Private respectively) and setting their
permissions. You’re prompted for an encryption key, or you can let
the system choose one at random. In either case, the key is itself
encrypted (‘wrapped’) using a pass phrase of your choosing. Once
set up, the ecryptfs filesystem can be mounted and unmounted
using two simple scripts, ecryptfs-mount-private and ecryptfs-
umount-private, which in effect wrap the mount -t ecryptfs
command shown earlier.

Ubuntu things one step further. It integrates the mounting and
unmounting operations into the login / logout process by hooking
in to a new PAM module called pam_ecryptfs.so. This module is
invoked at login time; it ‘unwraps’ the encryption key and uses it to
perform the ecryptfs mount of ~/.Private on to ~/Private. For
this to work, the pass phrase used to wrap the encryption key
must be the same as your login password.

If you install from the ‘Alternate’ CD, the installer screen that
creates the initial user account offers the option to set up ecryptfs.
This option does not appear to be offered on the desktop CD,
though I should say that while was experimenting with this I was
working with the beta release of Ubuntu 8.10, and things might
have changed by the time of the final release.

One rather whimsical piece of the implementation in Ubuntu is
the presence of a file named THIS DIRECTORY HAS BEEN
UNMOUNTED TO PROTECT YOUR DATA – Run mount.
ecryptfs_private to mount again in the Private directory.
Of course, this file only shows up when the ecryptfs mount is
not in place. This file turns out to be a symbolic link to mount.
ecryptfs_private. LXF

“Canonical has tried to
make ecryptfs as painless
to use as possible.”

using two simple scripts,
umount-private
command shown earlier.

unmounting operations into the login / logout process by hooking
in to a new PAM module called
invoked at login time; it ‘unwraps’ the encryption key and uses it to
perform the ecryptfs mount of
this to work, the pass phrase used to wrap the encryption key
must be the same as your login password.

creates the initial user account offers the option to set up ecryptfs.
This option does not appear to be offered on the desktop CD,
though I should say that while was experimenting with this I was
working with the beta release of Ubuntu 8.10, and things might
have changed by the time of the final release.

the presence of a file named
UNMOUNTED TO PROTECT YOUR DATA – Run mount.
ecryptfs_private to mount again
Of course, this file only shows up when the ecryptfs mount is

 At boot time, you’re prompted to enter the passphrase to
unlock the partition you have encrypted.

 Manual configuration of encrypted partitions needs care. Here, /home is mounted
from the encrypted partition sda3_crypt.

LXF114.sysadmin 65 21/11/08 5:40:35 pm

