
84 Linux Format May 2008

Our
expert

Backups: simple

Juliet Kemp
has been playing
with Linux systems
for around eight
years now, after
discovering that it
was an excellent
way to avoid
revising for her
finals. She’s been a
full-time Linux
sysadmin for
several years, and
is worryingly
obsessive about
backups.

If you want more reliable backups, you need an offsite backup process that
happens no matter how absent-minded you are. Juliet Kemp explains how.

Remote backups Keep your data safe
and sound when all else fails

O
n-site backups – an external disk, for example, or even

tapes – are all well and good in their own way. Indeed, I’d

go so far as to say that they’re mandatory if you care at

all about your data. If you have lost data, you’ll know I’m right here.

If you haven’t, please take my word for it rather than finding out

the hard way!

But what about when some light-fingered type lifts your

external disk along with your laptop, or a solar flar creates a highly

localised electro magnetic pulse that wipes every storage medium

in the office (unlikely, but if you’re paranoid enough, you’ll have

planned for it anyway)? That’s when you need an off-site backup.

We’re told all the time to back up regularly but realistically, the the

only way to ensure that backups happen as often as they should is

to make the process automatic.

We’ll look here at two options for off-site backups. The first,

using Rsync, is useful if you have shell access to another machine

located elsewhere, and the second uses Google’s Gmail service for

storage. Both are network-based, which means that they have

some size limitations, which will depend in part on the speed of

your cennection. At the end of the tutorial I’ll discuss possibilities

for larger quantities of data.

Rsync

If you have access to an off-site shell account (you may get one

with your hosting package, or be able to pay for one), you can use

that old Unix standby, rsync.

The basic rsync command is:

rsync /dir/source /dir/destination

This looks at /dir/source, and compares it with /dir/

destination. If any of the files in the source directory are new, or

have been updated, rsync will copy them across to the destination

directory. This means that the first time you run it on a particular

directory, it will copy everything, and may take quite a while. The

second and subsequent times it will copy only the files that have

changed, so it’ll be much faster. This saves both time and (with off-

site transfer) network capacity.

The above command as written will only synchronise from one

local directory to another local directory – basically acting as a

gloried version of cp. What is important for our purposes is that

/dir/destination can in fact be on another machine: referred to as

machinename.example.com:/dir/destination. You can also

reverse this, and copy from a source directory on a remote

machine to a local destination directory, which is useful when it

comes to restoring data.

Rsync can run with a variety of options. The ones you probably

want are -avuz. We’ll run down those one by one: -v sets the

verbose option, so you can follow what’s happening; -a is the

archive option, which recurses down the directory structure and

also keeps ownership, permissions, edit times, and so on intact; -u

sets the update option, which keeps intact any files that are newer

on the destination directory than on the source; and -z

compresses during transfer, speeding things up a little.

Symlinks are not followed by default, but just saved as

symlinks. If you need them to be followed (and the files that they

lead to to be copied in full), you can set that as an option. Check

out man rsync for that and the other available options.

So, if your shell account is on offsite.example.com, and you

have a backup directory set up at /home/user/backup, you can

back up the directory /test like this:

 Using rsync’s verbose option (-v) means you’ll get loads of

useful feedback on how the backups are proceeding.

LXF105.tut_backup 84 12/3/08 16:18:36

May 2008 Linux Format 85

Remote backups Tutorial

If you need

information about

any Unix command,

man command

name is a good

place to start.

Quick
tip

 data insurance

If you missed last issue Call 0870 837 4773 or +44 1858 438795.

rsync -avuz /test user@offsite.example.com:/home/user/backup

You will need rsyncd to be running on the remote machine. If

you have a commercial shell account this will probably already be

the case; if not, talk to the sysadmin. If the remote machine

belongs to you, install the relevant package for your distribution.

On Debian, you’ll also need to edit /etc/default/rsync to set

RSYNC_ENABLE to true, then run /etc/init.d/rsync start.

You’ll be challenged for your SSH password – we’ll look at how

to avoid this in a moment – then rsync will tell you that it’s building

the file list. This means that it’s working out what files to copy

across. In this case, it’ll copy all of them, as this is a first backup. In

due course, it will start copying the files – and since we used the

-v switch, it’ll tell you about each file. Once rsync has finished,

your backed-up files will be in /home/user/backup/test on

offsite.example.com.

At this point it’s worth thinking about the way in which rsync

deals with directories. It acts differently depending on whether or

not there is a trailing slash at the end of the source directory. As a

simple example:

rsync /test/one /backup

will transfer all the files in /test/one to /backup/one. In other

words, it copies the whole directory (and its contents) by name.

The following code:

rsync /test/one/ /backup

(note trailing slash on the source directory) will copy all the files in

/test/one to /backup. It copies only the contents, not the

directory itself. Most of the time, you’ll want to use the first version,

because it’s tidier.

Once your first run has finished, try changing a single file and

running the same command again. You’ll see that this time, only

the file that you changed is copied over.

Password-free SSH
OK, so rsync is copying files happily on to your off-site machine.

But at present it still requires an SSH password – not good for

automation! What you need to do to get around this, as you might

have guessed, is to set up a password-free SSH key.

First of all, you need to create your private key. On your home

machine, fire up a terminal window and type

ssh-keygen -t rsa -f ~/.ssh/rsync

to generate an RSA key (you can also generate other types of

key – check the man page for details) and save it in /home/

ser/.ssh/rsync. This will prompt you for a passphrase – just

hit Return to get an empty passphrase. Once it’s done, you should

have files /home/user/.ssh/rsync and /home/user/.ssh/

rsync.pub.

What you would normally do here with a regular passworded

key is add the contents of /home/user/.ssh/rsync.pub to the file

/home/user/.ssh/authorized_keys2 on offsite.example.com,

and off you would go. However, in this case, that’s dangerous,

because this key has no passphrase. So anyone who got access to

your home machine could get access to offsite.example.com,

and do anything they wanted to your files there or to anything else

you have access to – not very good from a security perspective!

What you can do to reduce the security risk is to edit the

authorized_keys2 file on offsite.example.com in order to restrict

that key so that it is permitted only to run your backup command.

Copy /home/user/.ssh/rsync.pub to tmpfile and edit tmpfile

so that its single line (It’ll be a big block of what looks like random

characters, but is in fact your private key) has this at the start of it:

command=”rsync -avuz -e “ssh -i /home/user/.ssh/rsync” /test

user@offsite.example.com:/home/user/backup”,no-port-

forwarding,no-X11-forwarding,no-agent-forwarding

Now add the contents of tmpfile to /home/user/.ssh/

authorized_keys2 on offsite.example.com (cut and paste, or use

cat, as you prefer). Make sure it’s all one line.

The rsync command needs to know where to find your private

key, so you’ll need to run:

rsync -avuz -e “ssh -i /home/user/.ssh/rsync” /test user@offsite.

example.com:/home/user/backup

This specifies the SSH key to use. This line must match the

command you put in the authorized_keys2 file above.

When you run it, you should see rsync connecting without

asking for a passphrase, building its file list, and then copying

across any files you’ve changed since the last run. Success!

Automating with cron
It is a sad but undeniable truth that if you have to remember to do

something, then backups just won’t happen often enough. So the

last stage is to make this happen automatically. Type crontab -e

and add this line to your crontab file:

5 0 * * * rsync -auz /test user@offsite.example.com:/home/user/

backup

Note that the -v option isn’t there any more – you don’t want

lots of Cron output. Obviously, if you want to rsync a directory

other than /test, you should change that. Remember to change

the authorized_keys2 file on offsite.example.com as well! It

must match the command you’re running. The numbers at the

start of the crontab entry mean that this will run at five minutes

past midnight (0), every day (check the crontab man page for

more details). And you’re done – your backup will now run

automatically every night.

 You’ll need to edit

Authorized_keys2

so that your

privete key (which

has no password)

can run only your

backup command.

LXF105.tut_backup 85 12/3/08 16:18:43

86 Linux Format May 2008

Tutorial Remote backups

When using

subroutines, you

must either define

them before they are

first used, or declare

them first, and

define them at the

end – we’ve done

the latter here.

Quick
tip

 $msg->send(‘smtp’, $smtpserver);

}

Remember that you’ll need to change the permissions so that it’s

user-executable before you can run it (chmod u+x gmail.pl).

Perl stew
OK, let’s take a quick look at that script. The -w flag on the first

line means that Perl will warn you if you’re doing anything dubious

– things that might indicate a typo or thinko. The next line, use

strict, is another error-catching measure that makes you declare

all your variables before using them. I’d recommend always using

both of these in your Perl scripts. It’s slightly more hassle but

saves a lot of debugging time.

The find command (from File::Find) recurses over the

directory you specify (here it’s /home/jkemp/personal/). Use a

small directory – as we’ll see later, this method is size-limited. The

find command calls the wanted subroutine, which is declared at

the start of the script and defined later. The subroutine checks

that the name it’s been passed actually corresponds to a file, and if

so, adds the full name of that file to the array of files to be archived.

The line starting Archive::Tar does all the heavy lifting. It

creates a tar archive with name as given by the variable $tarfile,

compressed (that’s where the 1

comes in – ‘true’ means

compress, ‘false’ means don’t

compress), from the files in

@backupdir.

Then the script sends the

email. (I’ve put this as a

subroutine so that if you’re testing, it’s easy to take the email-

sending line out while you’re checking that your archive does

everything it wants to.) The email code is fairly self-explanatory. It

creates a new MIME message, attaches the gzipped backup file,

and sends the message. You’ll need to know the name of your

SMTP server – ask your ISP if in doubt, or check the config on

your email program.

To test that this is working properly, first comment out the

sendmail() line by adding a hash (#) character at the start, then

resave the program. Then run it (/path/to/gmail.pl) and check

the location of your gmailtar.tgz file. If it’s there, move it into a new

clean test directory, and unzip it (tar -zxf gmailtar.tgz). Are all the

files there? Great. Now uncomment that Sendmail line, save, and

run the program again. Check your Gmail account – you should

have a new mail with gzipped attachment.

This script creates a tarball and leaves it on your computer. To

delete this, add the line

unlink $tarfile;

after the sendmail() line. Alternatively, it will just be overwritten

the next time the script runs. You probably don’t want to have the

delete line in during testing, because it can be handy to keep the

file around so you can see what’s going on. To make this run daily,

as with the first method, set it up in your crontab.

The third way
The major downside to this is that there is a limit on how much

data you can send this way. Very large emails are a nuisance and

can cause network slowdown, and some servers will reject them,

so this method is really only useful for small numbers of smallish

files. Text files tend to be small, so by all means email the current

draft of your new bestselling novel to yourself every night. It’s not a

useful option as a backup for your photos or music files, though.

Obviously this would also work with any other webmail account;

Gmail already offers 5GB of storage for free, and has plans to

steadily increase this (and if you need more, you can pay for an

account with even more space), so it can be a good off-site backup

solution for some files. You can set up a Perl script to email a given

set of files to your Gmail account, then run it automatically every

night with Cron.

Detailed description of Perl coding is outside the scope of this

tutorial, but the script sould be fairly clear. You’ll need to have the

Perl modules Net::SMTP, File::Find, Mime::Lite, Archive::Tar, and

IO::Zlib installed for this script. In Debian, the first two of these are

a default part of the regular Perl install; the others are available as

libmime-lite-perl, libarchive-tar-perl and libio-zlib-perl.

If you can’t get these via your distribution, you can install them

with CPAN, using the line:

perl -MCPAN -e “install Net::SMTP”

(substitute the other module names for Net::SMTP as

appropriate).

OK, now for that script:

#!/usr/bin/perl -w

use strict;

use Archive::Tar;

use File::Find;

use MIME::Lite;

use Net::SMTP;

sub sendmail();

sub wanted();

my $email = ‘my.

name@gmail.com’;

my $smtpserver = “smtp.example.com”;

my @archive_list;

my $backup_dir = “/home/jkemp/personal/”;

my $tarfile = “/home/jkemp/gmailtar.tgz”;

find (\&wanted, $backupdir);

Archive::Tar->create_archive($tarfile, “1”, @archive_list);

sendmail();

sub sendmail() {

 my $msg = MIME::Lite->new(To => $email,

 Subject => “Backup email”,

 Type => “multipart/mixed”);

 $msg->attach(Type => “application/gzip”,

 Path => $tarfile,

 Filename => “backup.tgz”);

CPAN

CPAN is an enormous collection of free

Perl modules – reusable Perl toolboxes, in

effect. There’s a pain-free installation

method, as described in the tutorial above.

If you’re writing Perl at all regularly, it is

well worth checking out. Because anyone

can upload to CPAN, quality does vary, but

there’s some good stuff in there, and the

docs can be very helpful. At its best it can

save an awful lot of wheel-reinventing.

To identify the most valuable CPAN

modules, it’s helpful to check the ‘kwalitee’

scores on the CPAN Testing Service page

(http://cpants.perl.org/kwalitee.html),

look at the recommended CPAN modules

on the Perl Foundation website

(www.perlfoundation.org/perl5/index.

cgi?recommended_cpan_modules),

and check out CPAN Ratings

(http://cpanratings.perl.org).

“Computers are much
better at remembering
things than humans are.”

Gmail

LXF105.tut_backup 86 12/3/08 16:18:44

May 2008 Linux Format 87

Remote backups Tutorial

Using a version

control system is

arguably a good idea

anyway – you never

know when you

might want to undo

a change!

Quick
tip

we’ve just used Gmail because it’s the one that offers the most

free space. Both the automatic network-based options discussed

here are fundamentally a fairly limited solution to the problem of

off-site backup. The main problem is one of data size – sending

data across the network takes time, and the more data you have,

the more time it takes. (It also costs money, on most home

broadband plans!) Neither of these methods are really suitable as

off-site backups for, say, your music collection or photo collection.

They’re more for files such as text files and other important

smaller files.

One alternative option would be to use an external disk to

minimise the initial overhead. You could dump your music and

photos on to an external disk at home, then take it to your off-site

machine (maybe in your office, if that’s on overnight, though

you may want to check this with your employers!) and hook it up

there. After this, any updates would be smaller, and could be done

via rsync.

Alternatively you could have two disks, one at home and one at

work, and swap them weekly. Hook up a disk at home, and set up

rsync using Cron to run locally every night, and make a backup on

to the external disk. On Mondays, take this disk to your off-site

location – ie your work – and leave it in your desk. Take your other

disk home that evening and hook it up. Repeat the swap every

week. Your off-site backup may be up to a week old, but that’s still

better than nothing. This has, of course, the non-automatic

element that you need to remember to do the swap!

Take it further
As discussed above, you’re still limited in terms of the past data

that you can keep. If you really need extensive backup history or to

store larger files, you probably need to look into a tailor-made

backup solution such as Bacula (www.bacula.org), and possibly

into paying for hosting.

Hopefully, one of the methods we’ve looked at here has taken

your fancy for your off-site backup needs. Just remember: the

more often you can run backups, the better. And computers are

much better at remembering things than humans are, just as

they’re way better at copying large quantities of data about the

place. So, let the computer do the things it’s good at, and you can

get on with the things that humans are good at. Such as writing

the Great British Novel, the Next Killer Web Application, or the

ground-breaking critique of the blogosphere that will propel you to

online stardom, safe in the knowledge that the fruits of your

labours are secure. LXF

Subversion

The advantage of the Gmail method is that

it means that you keep multiple versions of

your files. Each email is separate and will be

kept until you delete it (or run out of space).

With rsync, files are overwritten, although

not deleted. To delete files on the

destination that have been deleted from the

source you need to use the --delete flag.

The problem with rsync overwriting files is

that if you make a mistake and don’t notice

it until after your regular scheduled backup,

it’s too late. Yesterday’s version is gone; the

only version you have is today’s.

One way to avoid this is to use a version

control system such as Subversion. Version

control systems mean that you have a

record of all the changes made to your files.

So if you screw up, you can just revert to an

earlier version. Use rsync to back up your

repository (your version control database),

and you’re good to go.

If you really don’t want to do that, there

are other options. One possibility would be

to set up a Cron job on your off-site

machine that runs just before the

scheduled rsync, and copies your existing

backup directory elsewhere. For example,

this line in your crontab would do the job:

5 23 * * * cp -rf /home/user/backup /home/

user/backup2

This runs at 11:05 pm daily. It would only

keep one extra day’s worth of data, but that

might be enough for you. You write a more

elaborate script to keep more days’ worth of

backups, but there’s a penalty to that in

terms of disk space. Every extra day of

backups increases the disk space required

by the same amount again – version control

has a much smaller footprint.

Anacron

If your computer isn’t always on – for example, if you use a

laptop – you can use Anacron instead of Cron.

With Cron, you schedule a job at a specific date and time. If at

that particular time the machine is down, the job just won’t run

(until the next time it’s scheduled). With Anacron, you schedule a

job to run at specific intervals – for example, daily, weekly, or

monthly. Anacron will try to keep as closely to this schedule as

system uptime permits. So if a job is supposed to run daily, and

when the computer is switched on the Anacron daemon finds

that it hasn’t run in the last 24 hours, the job will be run there

and then.

The downside of Anacron is that it can only run at intervals of

one or more days – unlike Cron, which can run at intervals as

small as one minute. For our purposes this isn’t a problem, as we

want the backup to run only daily. The other issue is that

Anacron must be configured by the root user, whereas Cron can

be used by any user. However, if this is your own machine you

presumably have root access!

Edit the file /etc/anacrontab, as root, to add the line:

1 5 backup rsync -auz -e “ssh -i /home/user/.ssh/rsync” /test

user@offsite.example.com:/home/user/backup

This line will run the given rsync command every day (first

parameter), with a delay of 5 minutes (second parameter), and

identify the job logs as “backup” (third parameter).

LXF105.tut_backup 87 12/3/08 16:18:46

