
Tutorial Hardcore Linux

98 Linux Format February 2008

Dr Chris Brown

A Unix user for over
25 years, his own
Interactive Digital
Learning company
provides Linux
training, content
and consultancy.
He also specialises
in computer-based
classroom training
delivery systems.

Our
expert

backend servers; in principle you could use anything that offers

a web server. In my case I used a couple of laptops, one running

SUSE 10.3 and one running Ubuntu 7.04. In reality you’d probably

want more than two backend servers, but two is enough to prove

the point.

You might well be wondering why I’m running a different

operating system on each of the four computers. It’s a fair

question, and one I often ask myself! Unfortunately, it’s simply

a fact of life for those of us who make our living by messing

around with Linux.

How a load-balancing cluster works
Client machines send service requests (for example an HTTP GET

request for a web page) to the public IP address of the director

(192.168.0.41 on the figure; as far as the clients are concerned,

this is the IP address at which the service is provided).

The director chooses one of the backend servers to forward

the request to. It rewrites the destination IP address of the packet

to be that of the chosen backend server and forwards the packet

out onto the internal network.

The chosen backend server processes the request and

sends an HTTP response, which hopefully includes the

requested page. This response is addressed to the client

machine (192.168.0.2) but is initially sent back to the director

(10.0.0.1), because the director is configured as the default

gateway for the backend server. The director rewrites the source

Linux Virtual

Hardcore Linux Challenge yourself
with advanced projects for power users

Building load-balancing clusters with LVS is as good at keeping out
the cold as chopping logs on a winter’s day, maintains Dr Chris Brown.

T
his month’s Hardcore tutorial shows you how to provide

a load-balanced cluster of web servers, with a scalable

performance that far outstrips the capability of an

individual server. We’ll be using the Red Hat cluster software, but

the core functionality described here is based on the Linux virtual

server kernel module and is not specific to Red Hat.

If you want to follow along with the tutorial for real, you’ll

need at least four computers, as shown in Figure 1 (opposite

page). I realise this might put it out of the reach of some readers

as a practical project, but hopefully it can remain as a thought

experiment, like that thing Schrödinger did with his cat. If you’ve

got some old machines lying about the place, why not refer to this

month’s cover feature to find out how to get them up and running

again – then network them?

Machine 1 is simply a client used for testing – it could be

anything that has a web browser. In my case, I commandeered

my wife’s machine, which runs Vista. Machine 2 is where the

real action is. This machine must be running Linux, and should

preferably have two network interfaces, as shown in the figure. (It’s

possible to construct the cluster using just a single network, but

this arrangement wouldn’t be used on a production system, and it

needs a bit of IP-level trickery to make it work).

This machine performs load balancing and routing into

the cluster, and is known as the “director” in some LVS

documentation. In my case, machine 2 was running CentOS5

(essentially equivalent to RHEL5). Machines 3 and 4 are the

Last month Use ‘heartbeat’ to provide automatic failover to a backup server.

 Figure 2: Configuring a virtual server with Piranha.

LXF102.tut_adv Sec2:98 14/12/07 15:41:05

 Hardcore Linux Tutorial

February 2008 Linux Format 99

If you missed last issue Call 0870 837 4773 or +44 1858 438795.

IP address of the packet to refer to its own public IP address and

sends the packet back to the client.

All of this IP-level tomfoolery is carried out by the LVS module

within the Linux kernel. The director is not simply acting as a

reverse web proxy, and commands such as netstat -ant will NOT

show any user-level process listening on port 80.

The address re-writing is a form of NAT (Network Address

Translation) and allows the director to masquerade as the real

server, and to hide the presence of the internal network that’s

doing the real work.

Balancing the load
A key feature of LVS is load balancing – that is, making sure that

each backend server receives roughly the same amount of work.

LVS has several algorithms for doing this; we’ll mention four.

 Round-robin scheduling is the simplest algorithm. The

director just works its way around the backend servers in turn,

starting round with the first one again when it reaches the end

of the list. This is good for testing because it’s easy to verify that

all your backend servers are working, but it may not be best in a

production environment.

 Weighted round-robin is similar but lets you assign a weight

to each backend server to indicate the relative speed of each

server. A server with a weight of two is assumed to be twice as

powerful as a server with a weight of one and will receive twice

as many requests.

 Least-connection load balancing tracks the number of

currently active connections to each backend server and

forwards the request to the one with the least number.

 Weighted least connection method also takes into account

the relative processing power (weight) of the server. The weighted

least connection method is good for production clusters because

it works well when service requests take widely varying amounts

of time to process and/or when the backend servers in the cluster

are not equally powerful.

The latter two algorithms are dynamic; that is, they take

account of the current load on the machines in the cluster.

The tools for the job
To make all this work, the kernel maintains a virtual server table

which contains, among other things, the IP addresses of the

backend servers. The command-line tool ipvsadm is used to

maintain and inspect this table.

Assuming that your kernel is built to include the LVS module

(and most of them are these days) ipvsadm is the only program

you absolutely must have to make LVS work; however there are

some other toolsets around that make life easier. (The situation

is similar to the packet-filtering machinery in the kernel. In theory

we only need the command-line tool iptables to manage this and

create a packet-filtering firewall, in practice most of us use higher-

 Server

Worried about bottlenecks?

Since all the traffic into and out of the cluster passes through

the director, you might be wondering if these machines will

create a performance bottleneck. In fact this is unlikely to be the

case. Remember, the director is performing only simple packet

header manipulation inside the kernel, and it turns out that even

a modest machine is capable of saturating a 100 MBps network.

It’s much more likely that the network bandwidth into the site

will be the bottleneck. For lots more information about using old

PCs for tasks like networking, see this month’s cover feature

starting on page 45.

 Figure 1: A simple load-balancing cluster.

1

2

3 4

LXF102.tut_adv Sec2:99 14/12/07 15:41:07

Tutorial Hardcore Linux

100 Linux Format February 2008

level tools – often graphical – to build our firewall rulesets.) For

this tutorial we’ll use the clustering toolset from Red Hat which

includes a browser-based configuration tool called Piranha.

Now, the configuration shown in Figure 1 has one major

shortcoming – the director presents a single point of failure within

the cluster. To overcome this, it’s possible to use a primary and

backup server pair as the director, using a heartbeat message

exchange to allow the backup to detect the failure of the primary

and take over its resources.

For this tutorial I’ve ignored this issue, partly because I

discussed it in detail last month and partly because I would have

needed a fifth machine to construct the cluster, and I only have

four! It should be noted, however, that the clustering toolset

from Red Hat does indeed include functionality to failover from a

primary to a backup director.

Setting up the backend servers
If you want to actually build the cluster described in this tutorial,

start with the backend servers. These can be any machines able

to offer HTTP-based web service on port 80; in my case they were

running Linux and Apache.

You will need to create some content in the DocumentRoot

directory of each server, and for testing purposes it’s a good idea

to make the content different on each machine so we can easily

distinguish which one actually served the request. For example,

on backend server 1, I created a file called proverb.html with the

line “A stitch in time saves nine”. On server 2 the line was “Look

before you leap”. Of course in reality you’d need to ensure that all

the backend servers were ‘in sync’ and serving the same content

– an issue we’ll return to later.

Give the machines static IP addresses appropriate for the

internal network. In my case I used 10.0.0.2 and 10.0.0.3. Set the

default route on these machines to be the private IP address of

the director (10.0.0.1).

Setting up the director
On the director machine, begin by downloading and installing

the Red Hat clustering tools. In my case (remember that

I’m running CentOS5 on this machine) I simply used the

graphical install tool (pirut) to install the packages ipvsadm and

Piranha from the CentOS repository. My next step was to run the

command piranha-passwd to set a password for the piranha

configuration tool:

/etc/init.d/piranha-gui start

This service listens on port 3636 and provides a browser-based

interface for configuring the clustering toolset, so once it’s running

I can point my browser at http://localhost:3636. I’ll need to log

in, using the username piranha and the password I just set.

From here I’m presented with four main screens: Control/

Monitoring, Global Settings, Redundancy and Virtual Servers (you

can see the links to these in Figure 3 (above). To begin, go to the

 Figure 3: Specifying the real (backend) servers.

If it doesn’t work

Chances are good that your cluster won’t work the

first time you try it. You have a couple of choices at

this point. First, you could hurl one of the laptops

across the room and curse Microsoft.

These are not, of course, productive

responses, even if they do make you feel better.

And Microsoft really shouldn’t be blamed since

we’re not actually using any of its software. The

second response is to take some deep, calming

breaths, then conduct a few diagnostic tests:

A good first step would be to verify connectivity

from the LVS machine, using good ol’ ping.

First, make sure you can ping your test machine

(192.168.0.2). Then check that you can ping both

your backend servers (10.0.0.2 and 10.0.0.3). If

this doesn’t work, run ifconfig -a and verify that

eth0 has IP address 192.168.0.41 and eth1 has

address 10.0.0.1.

Also, run route -n to check the routing

table – verify that you have routes out onto the

192.168.0.0 network and the 10.0.0.0 network via

the appropriate interfaces.

If you can ping your backend servers, fire up

the web browser on the LVS machine (assuming

there is a browser installed there – you don’t really

need one). Verify that you can reach the URLs

http://10.0.0.2 and http://10.0.0.3, and see the

web content served by these two machines. (If the

pings are OK but the web servers aren’t accessible,

make sure that the web servers are actually

running on the backend servers, and that the

backend servers don’t have firewall rules in place

that prevent them from being accessed.)

You should also carefully check the LVS routing

table displayed by the Control/Monitoring page of

Piranha and verify that your backend servers show

up there. If you’re still having no luck, verify that IP

forwarding is enabled on the LVS machine. You can

do this with the command:

cat /proc/sys/net/ipv4/ip_forward

If it reports ‘1’, that’s fine, but if it reports ‘0’ you’ll

need to enable IP forwarding like this:

echo 1 > /proc/sys/net/ipv4/ip_forward

You might also verify that your kernel is actually

configured to use LVS. If your distro provides a copy

of the config file used to build the kernel (it will

likely be /boot/config-something-or-other) use

grep to look for the string CONFIG_IP_VS in this

file, and verify that you see a line like CONFIG_IP_

VS=m, among others. You might also try:

lsmod | grep vs

to verify that the ip_vs module is loaded. If you

can’t find evidence for virtual server support in the

kernel you may have to reconfigure and rebuild

your kernel, an activity that is beyond the scope of

this tutorial.

If all these tests look OK and things still don’t

work, you may now hurl one of the laptops across

the room. This won’t make your cluster work, but at

least you’ll have a better idea of why it’s broken

“You’ll need at least four computers
to follow along for real; otherwise
see this as a thought experiment”

LXF102.tut_adv Sec1:100 14/12/07 15:41:07

 Hardcore Linux Tutorial

February 2008 Linux Format 101

requests to that machine. The nanny will continue to probe the

server, however, and should it come back up, the nanny will run

ipvsadm again to reinstate the routing entry.

You can observe this behaviour by unplugging the network

cable from a backend server (or simply stopping the httpd

daemon) and examining the LVS routing table. You should see

your dead server’s entry disappear. If you reconnect the network

cable, or restart the server, the entry will re-appear. Be patient,

though, it can take 20 seconds or so for these changes to show up.

The Denouement
If all seems well, it’s time to go to the client machine (machine 1 on

the first figure) and try to access the page in the browser. In this

example, you’d browse to http://192.168.0.41/proverbs.html,

and you should see the Proverbs page served from one of your

backend servers. If you force a page refresh, you’ll see the proverbs

page from the next server in the round-robin sequence. You should

also be able to verify the round-robin behaviour by examining the

apache access logs of the individual backend servers. (If you look

carefully at the log file entries, you see that these accesses come

from 192.168.0.2 whereas the probes from the nannies come

from 10.0.0.1.) If all of this works, congratulations! You’ve just built

your first load-balancing Linux cluster.

Postscript
Let’s pause and consider what we’ve demonstrated in these two

tutorials. We’ve seen how to build failover clustering solutions that

add another nine onto the availability of your service (for example,

to go from 99.9% to 99.99% availability); and we’ve seen how to

build load-balancing clusters able to far outstrip the performance

of an individual web server. In both cases we’ve used free, open

source software running on a free, open source operating system.

I sometimes wonder what, as he gets into bed at night with his

mug of Horlicks, Steve Ballmer makes of it all. It sure impresses

the hell out of me. LXF

Next month Distribute workload of a ‘virtual’ server across multiple backend servers.

 Figure 4: The control and monitor screen of Piranha.

 In LXF101’s Clustering tutorial, we managed to print the wrong figure. Apologies

to any readers who struggled to make sense of the diagram in the context of the

tutorial. Here’s the Figure 1 that should have appeared last month!

ERRATA: Figure 1 from LXF101
Virtual Servers screen and add a new service. Figure 2 (page

98) shows the form you’ll fill in. Among other things,

you need to give the service a name, specify the port number and

interface it will accept request packets on, and select the

scheduling algorithm (for initial testing I chose ‘Round Robin’).

Clicking the Real Server link at the top of this page takes you to the

screen shown in Figure 3. Here you can specify the names, IP

addresses and weights of your backend servers.

Behind the scenes, most of the configuration captured by

Piranha is stored in the config file /etc/sysconfig/ha/lvs.cf.

Other tools in the clustering toolset read this file; it’s plain text and

there’s no reason why you can’t just hand-edit it directly if you

prefer. With this configuration in place, you should be good to go.

Launch the clustering service from the command line with:

/etc/init.d/pulse start

(On a production system you’d have this service start

automatically at boot time.)

Now go to the Piranha control/monitoring screen, shown

in Figure 4 (below). Look carefully at the LVS routing table. You

should see an entry there for your virtual service (that’s the line

starting TCP...) and below that, a line for each of your backend

servers. You can obtain the same information from the command

line with the command

ipvsadm -L

The periodic health check
Also on the control/monitoring screen there’s an LVS process

table. Here you’ll see a couple of ‘nanny’ processes. These are

responsible for verifying that the backend servers are still up and

running, and there’s one nanny for each server. They work by

periodically sending a simple HTTP GET request and verifying

that there’s a reply. If you look carefully at the -s and -x options

specified to nanny, you’ll see the send and expect strings that are

used for this test. (You can customise these if you want, using the

Virtual Servers > Monitoring Scripts page of Piranha.)

If you look at the Apache access logs on the backend servers,

you’ll see these probe requests arriving every six seconds. If a

nanny process detects that its server has stopped responding,

it will invoke ipvsadm to remove that machine’s entry from the

LVS routing table, so that the director will no longer forward any

LXF102.tut_adv Sec1:101 14/12/07 15:41:08

