
Last month The first in the series: using Perl to build your very own IRC bot.

94 Linux Format January 2008

Coding: Pocket

Code Project Learn new skills by
building practical mini-programs

PART 2 Can’t remember all those fiddly command-line flags? Mike Saunders
shows you how to create GUI-like alternatives for common admin utilities.

we’ll give you the code and techniques to make your own config

tools – so at the end, you’ll be able to write user-friendly utilities

for starting services, clearing temporary files, or anything else

you’d normally do at the shell prompt. Not only will this save you

vital time when you’re at the command line, but it means you can

write config tools for other people who may log into your

machines. If you run a server and don’t want users trying to

guesstimate super-complex commands, you can knock together a

quick dialog-based version.

As with last month’s code project (an IRC bot in Perl), this

guide assumes a smattering of programming knowledge. Don’t

worry: you don’t need to be a coding whizz, but if you’ve played

around with another language before, you’ll be off to a flying start.

But even if you’ve never written a line of code in your life, hopefully

this tutorial will show you how programs fit together and what you

can do. Enough chit-chat – let’s get started with UserMaster...

Pint-sized Python
We’ll base our project on Python, a hugely popular programming

language that’s used in everything from tiny scripting tools to fully-

fledged applications. If you’ve ever installed Fedora or Red Hat

Enterprise Linux, you’ll have seen a Python application in all its

glory: the Anaconda installer is written almost entirely in the

language. Python is blissfully easy to read (perhaps the most

human- readable computing language around), so we don’t need

to detail minutiae of the syntax. Indeed, if you’re a regular

Pythoner you can skip over this bit. But for a quick overview of the

language, enter this into a text file and save it in your home

directory as test.py:

print “How easy is this?”

x = 1

y = 2

z = x + y

print “Result of x + y is”, z

Now open up a terminal and enter:

python test.py

The Python interpreter runs and executes our code. It prints a

string to the screen, then adds together two variables, and

displays the results. You can call variables almost anything you

want, providing they don’t conflict with Python keywords. So here,

x, y and z are fine generic variable names. You don’t need to faff

around with curly braces either, as Python uses indentation for

code blocks, as follows:

def saysmithers():

 print “Excellent, Smithers”

print “Calling saysmithers function...”

saysmithers()

P
icture the scene: you’re logged into a remote server via

SSH, or you’ve installed a new graphics card and you’re left

staring at the command line. You need to enter a command,

but you can’t remember the zillion options that go along with it.

You’re stuck – all you can do is consult the manual pages and pore

through pages of waffling technical gobbledygook. We’ve all been

there, and no matter how experienced you are with Linux,

sometimes you need to accomplish a job quickly without sifting

through masses of reading material.

In this month’s coding project, we’re going to solve this

problem – and have fun along the way! We’ll show you how to

write a dialog-based program that gives you options one-by-one,

so that you don’t need to consult the man pages. In this guide,

we’ll show you how to write a nifty front-end for the useradd utility,

a command which (unsurprisingly) lets you add user accounts to

your Linux installation. Like many administration tools, useradd

requires a long string of options and parameters; we’re going to

make it much simpler by creating an interactive dialog-driven

version called UserMaster.

Now, useradd is a fairly trivial tool and there’s an alternative

command, adduser, which prompts you step-by-step. But here

Mike Saunders

 started
programming at
age eight on the ZX
Spectrum, and
loves to explore
every language in
existence. Except
COBOL
http://mikeos.
sourceforge.net

Our
expert

LXF101.tut_programming Sec2:94 26/11/07 18:01:32

If you missed last issue: Call 0870 837 4773 or +44 1858 438795.

January 2008 Linux Format 95

Python programming Tutorial

 config tools
Here, we declare a subroutine (aka function) at the start – it’s

not executed immediately, but only when we call it. So Python

skips over the first chunk of code, as it’s a separate function, and

begins with the “Calling” print line. Then our code calls the

saysmithers() routine which prints the “Excellent” message.

Code that belongs to a function or code block is marked with tab

indents, as you can see from our examples. You can pass

parameters to functions thusly:

def saystuff(mystring):

 print “You said:”, mystring

saystuff(“Bach rules”)

saystuff(“So does Telemann”)

So here, we have a function that just spits out whatever text it

receives. Again, it doesn’t execute straight away – as it’s a

standalone function – and code starts at the first non-function line.

We call the saystuff function twice, with different text as

parameters, and our function simply prints the supplied text to

the screen. Super simple!

Commence cursing
For our UserMaster tool, we don’t want a boring command line

interface – after all, that’s what the standard user management

programs use. Instead, we’ll create a friendlier menu and dialog-

driven interface using the curses library. If you’ve never heard of it

before, curses is a library of routines that let you create boxes,

windows and text-entry panels on text-based displays. It’s a play

on the word ‘cursor’, and on modern Linux systems, its

implementation is usually called ncurses.

Essentially, curses bridges the gap between the command line

and graphical desktops. In text mode, you can’t have zillions of

colours and pixel-perfect mouse control, but you can still have more

than a string of letters. curses lets you create semi-GUI applications

with windows and boxes – if you’ve ever used the text-based Debian,

Ubuntu or Slackware installers, you’ll know what we mean.

Here’s an example. As before, tap this into a text file and save it

into your home directory as test.py. Then execute it with python

text.py in a terminal:

import curses

myscreen = curses.initscr()

myscreen.border(0)

myscreen.addstr(12, 25, “Python curses in action!”)

myscreen.refresh()

myscreen.getch()

curses.endwin()

Python includes a set of bindings to the curses library – in other

words, you can utilise the features of curses in your Python

programs, providing you import the curses module as specified in

the first line of this code. The second line of code creates a new

curses screen object. Python is an object-oriented language, so in

this case, we create a new screen workspace (called myscreen)

and tell curses to initialise itself (initscr). Now we have control of

the terminal window.

Next, we have four lines which tell curses what to do with our

new myscreen object. First, we tell curses to draw a border around

our screen, which immediately makes it look prettier than a vanilla

CLI program. In the following line, we tell curses to add a text string

to our myscreen object, specifying the position where it should be

printed. Normally, text terminals are 80x25 characters if you’re at

the raw Linux terminal, or 80x24 if you’re in GUI mode and have

launched xterm, Konsole or Gnome-Terminal. So we print a line of

text 12 characters down and 25 across – the middle of the screen,

unless you’ve resized your terminal of course!

The third line is very important: we need to call refresh on our

myscreen object to tell curses that we’re ready to go.

Hypothetically, curses could refresh the screen every for every

command, but that would be very slow with complex programs.

So instead, it lets us build up our display bit-by-bit, and then draw

the whole lot in one fell swoop. Calling refresh here renders our

border and text screen to the screen.

Finally, we have two remaining lines of code: the first, which

calls getch on our myscreen object, tells curses to wait for a

keypress (get character). This pauses execution until we hit a key.

Finally, we call endwin which shuts down curses and returns us to

our normal command-line interface. When you run this program,

you’ll see the results in the first screenshot – very basic, but now

we’re ready to write UserMaster!

UserMaster 1.0
Here’s the code for our program. You can find it on our DVD in the

Magazine/Python section, but for now, just read over it – you

should be able to understand what it’s doing. If you’ve never used

Python before, there are a few new concepts in here, but we’ll go

over them in a moment.

 Our first Python

curses program!

It’s not much to

look at, but at

least we have some

control over the

terminal window.

LXF101.tut_programming Sec2:95 26/11/07 18:01:35

96 Linux Format January 2008

Tutorial Python programming

 curses.endwin()

 execute_cmd(“apachectl restart”)

 if x == ord(‘3’):

 curses.endwin()

 execute_cmd(“df -h”)

curses.endwin()

That’s quite a bit of code, but the majority of it is spent dealing

with the screen, so it’s actually not very complicated. This

program starts up with a menu offering four choices:

1 Add a user account

2 Restart the Apache web server

3 Display available disk space

4 Exit.

It doesn’t matter if you don’t have Apache installed – this is just to

demonstrate how you can expand the program into a more

versatile config tool.

The first line lets us run the program without having to specify

the Python interpreter by hand (python usermaster.py). More on

that in a moment. Then we have two import lines: the first gives

us access to Python’s system command, which lets us execute

external programs (ie binaries you’d find in /usr/bin etc), while

the second rolls in curses as described before.

Next we have two functions. The first takes a prompt string

parameter, and then asks the user for a string before returning it

back. Basically, in human-speak, it says, “Tell me what question to

put on the screen, then I’ll get some text from the user and send it

back.” We use this function later in the code to get information for

the useradd command.

The second function, meanwhile, executes a command on the

system. It takes a string parameter, clears the screen, and then

executes the command in the

a = system(cmd_string)

line. Now, what’s that a doing there? Well, we want to know

whether the command was executed successfully. When we use

Python’s system routine to run a program, it returns 0 if the

program ran successfully, or another number if it encountered an

error. Thanks to this, we can print out a message to show whether

the command worked – for instance, whether the user-adding

process succeeded or failed. Later on, you may expand

UserMaster to do other tasks, some of which may not generate

any visible output (eg running a cron job), but you’ll still know if it

worked or messed up.

So, those two functions lay the foundations for our OS. Python

will start executing the program at the x = 0 line, which just sets

up a variable for the next line, which checks to see if x contains the

character 4. Well, at this stage, we haven’t got any input from the

user yet – but we will in a few steps. We fire up ncurses, clear the

screen, set a border and then print some options strings to the

screen. Then we have:

x = screen.getch()

The user has a list of commands to choose from; whatever he/she

enters is stored in the x variable. So, the following if lines check to

see what’s in x: if it’s one, we’re in user-adding mode; if it’s 2, we

restart Apache; 3, and we show disk space; 4, and we exit. But

hang on a minute, where are we checking for 4 there? Well, we’re

doing that at the start of the loop, in the

while x != ord(‘4’):

line. If the user enters anything other than 1, 2 or 3, control jumps

back to the while line, which then stops executing the code block.

As mentioned earlier, code blocks in Python are marked with tab

indents, so after our program has done checking for the 3 key to

be pressed, it goes back to the start of the loop – the while line. It

does this because the following (and final) line, the endwin(), is

not indented and therefore not part of the while loop code block.

So the end of the indents shows where the code block finishes.

In this tutorial we’re using some of curses’s

most common routines – clearing the

screen, drawing a border, getting input etc.

But it’s a lot more capable than that,

providing a complete set of window

management routines. Yes, it seems futile

to have the concept of windows at a text

terminal, but it lets you render and remove

panels (eg question dialogs) while keeping

the text beneath intact. You can even

interface with the mouse in X terminals!

Annoyingly, documentation for the

Python curses bindings is rather sketchy at

present; the official Python documentation

only has a short chapter on the library and

there’s not much else doing the rounds. If

you want to do more with curses, your best

bet is the Linux Doc Project HOWTO at

http://tinyurl.com/rz7fs – it was

originally written with C coders in mind, but

you’ll find many of the same function calls

in the Python bindings.

Cultivating curses

#!/usr/bin/env python

from os import system

import curses

def get_param(prompt_string):

 screen.clear()

 screen.border(0)

 screen.addstr(2, 2, prompt_string)

 screen.refresh()

 input = screen.getstr(10, 10, 60)

 return input

def execute_cmd(cmd_string):

 system(“clear”)

 a = system(cmd_string)

 print “”

 if a == 0:

 print “Command executed correctly”

 else:

 print “Command terminated with error”

 raw_input(“Press enter”)

 print “”

x = 0

while x != ord(‘4’):

 screen = curses.initscr()

 screen.clear()

 screen.border(0)

 screen.addstr(2, 2, “Please enter a number...”)

 screen.addstr(4, 4, “1 - Add a user”)

 screen.addstr(5, 4, “2 - Restart Apache”)

 screen.addstr(6, 4, “3 - Show disk space”)

 screen.addstr(7, 4, “4 - Exit”)

 screen.refresh()

 x = screen.getch()

 if x == ord(‘1’):

 username = get_param(“Enter the username”)

 homedir = get_param(“Enter the home directory, eg /home/

nate”)

 groups = get_param(“Enter comma-separated groups, eg

adm,dialout,cdrom”)

 shell = get_param(“Enter the shell, eg /bin/bash:”)

 curses.endwin()

 execute_cmd(“useradd -d “ + homedir + “ -g 1000 -G “ +

groups + “ -m -s “ + shell + “ “ + username)

 if x == ord(‘2’):

When programming

with Python and

curses, you may find

that your terminal

window goes funny

or locks up if your

program crashes.

This is because

curses didn’t shut

down properly and

return your terminal

to its normal state.

If this happens, just

enter reset into your

terminal (even if you

can’t see the

characters!) and

you’ll be back to CLI

normality

Quick
tip

LXF101.tut_programming Sec2:96 26/11/07 18:01:36

January 2008 Linux Format 97

Python programming Tutorial

 UserMaster 1.0 in

action: the top-left

window showing

the main menu, and

the other window

getting input from

the user.

No buts, only ifs
Let’s look at those if statements. Depending on what the user

entered, we run a specified program using our execute_cmd()

function. For options 2 and 3, we simply disable curses (so that it

doesn’t interfere with our program output), and then run the

program. execute_cmd() tells us if the program executed

correctly, before handing control back to the main code – so we

see the menu again.

But it’s the first option that’s the most interesting. Here, we use

our funky get_param() function to display a series of prompts,

getting input from the user each time. We ask the user for an

account name, default shell and so forth; nothing too taxing. Then

we join all these bits of info together and feed them to the

system’s standard useradd command, with appropriate

command-line parameters (for example -d for home directory).

Hence this is why the execute_cmd() line here is very long – it

joins together all the strings and flags that the command needs in

order to work.

Grab usermaster.py from the Magazine/Python section of

our DVD, copy it to your home directory, then fire up a terminal

and switch to root (sudo bash in Ubuntu or su in others). Enter:

chmod +x usermaster.py

mv usermaster.py /usr/sbin/usermaster

Now usermaster is installed into the system path (for

administrator commands), so you can run it simply by entering

usermaster. Note that you need to run it as root though, as

normal users can’t create other user accounts! You can now try

creating a user via option 1 of the program – don’t worry about

setting up the exact right groups now. When you’ve created a user

via our tool, you’ll also need to set up a password as follows:

passwd nate

Replace nate with the username that you created. To keep the

code listing short, we haven’t included this facility in UserMaster,

but it’s an ideal first mini-project for you: adding a password

setting/changing facility! You’d just need to add another option to

the menu, get the account name via a get_param() call, then

execute passwd on that name.

The exact details of users and groups and how they are related

varies quite distinctly from linux distribution to distribution, so

you’ll want to tailor UserMaster for your own needs. As your

normal user account, enter groups in a terminal to see which

groups a standard user belongs to, and also see the useradd

manual page (man useradd) to learn more about the options we

pipe to the command.

Python: going further
If this has been your first foray into programming, hopefully

you’ve been pleasantly surprised by Python’s simplicity. Unlike

many programming languages which have their roots in the

1970s (or even earlier), Python is relatively modern, having been

developed in the early 1990s. It’s not tangled up in obscure

throwbacks and awkward fudges to maintain compatibility.

So it’s an excellent starting language, and you can find out

more at www.python.org. Also see the Magazine/Python

section of our DVD for the complete Python documentation –

extract the Zip archive in your file manager and open index.html

in the resulting Python-Docs-2.5 directory to get started. You’ll

find an outstandingly thorough tutorial which explains all

aspects of the language. Yes, the name was inspired by Monty

Python’s Flying Circus. He’s probably pining for the fjords! etc.

Next Month Revolutionise your programming efficiency the easy way – cheat!

Doesn’t a bot enslave other people’s PCs or

harvest email addresses for nefarious purposes?

Not the one we’re using! Many remote monitoring

tools tend to flood your inbox with extraneous data

when you’re away from your machine. Instead, you

can use your own IRC bot to find out basic things

like disk space, RAM used etc. purely by private

message! See LXF100’s tutorial for more info!

IRC bot tutorial

There’s so much more you can do with UserMaster – you can

add options for nigh-on any system administration job, helping

you (and other users) avoid constant command line hassles. Good

luck, and if you have any questions, try our programming forum at

www.linuxformat.co.uk/forums/ – if you’re encountering a

problem, there’s bound to be someone who’s already experienced

a similar one and thought of a solution! LXF

LXF101.tut_programming Sec2:97 26/11/07 18:01:37

