
50 Linux Format Christmas 2007

Hardware hacking
made easy

Any old geek can program software, but it takes some serious commitment to
computers to want to program hardware. We show you how to get started…

A
rduino is cool. It’s cool because it’s a tiny device –

about three inches by two inches – that comes

with a USB port and a programmable chip. It’s

cool because you can program it using a very

simple programming language known as Wiring. But most of

all, it’s cool because the entire reference design for the

hardware is available under a Creative Commons licence, so

you’re free to build your own if you want to. However, that’s

probably a little extreme for most people, which is why you

can also buy pre-build Arduino boards that are ready for

action, and they are available at very low prices too. The

Arduino programming IDE is available under the GPL for

multiple platforms, so the only things standing between you

and your own pet hardware project are an Arduino board, a

cool idea, and of course a Box O’ Tricks – some neat little

parts you can plug into the Arduino to make it do more

interesting things.

Getting set up
Arduino boards come in several varieties, but the main three are

the Arduino NG (“next generation”), the Arduino NG Plus, and the

Arduino Diecimila. These aren’t competing boards – rather the NG

came first, and was replaced by the NG Plus, then the Diecimila.

We have an NG because we bought it a while ago, but if you try to

buy one now you’ll probably only find the Diecimila for sale.

Ultimately the difference between these boards is very small: the

NG Plus has a ATmega168 CPU compared to the ATmega8 found

in the plain NG, and the Diecimila has been tweaked to make it

fractionally easier to load programs. The ATmega8 and ATmega168

chips are very similar, with the primary difference being that the

168 has space for larger programs, but that won’t be a problem for

our purposes here – any of those three boards are suitable for

following this tutorial.

As for where to get your Arduino board, we recommend PCB

Europe (http://pcb-europe.net) – they have the Diecimila on

sale there for 22 Euros (£15/$31 at the time of writing), and they

are very happy to answer questions if you’re unsure precisely what

you want.

Now comes the slightly more complicated part: what do you

want to plug into your Arduino? By itself, the board has 14 digital

Electronics and safety

Please remember that electronic parts can be very sensitive: static electricity can

be fatal to your Arduino and many other small computing parts, so don’t shuffle

your feet and wear anti-static wrist bands. Equally, though, remember that

electronic parts can be dangerous to you – they often have lead in them, so make

sure you wash your hands thoroughly after working with your kit!

Open source electronics

LXF100.arduino Sec1:50 30/10/07 10:42:58

Christmas 2007 Linux Format 51

Open Source electronics

connectors and a further 6 analogue connectors, as well as a

built-in LED and a reset button, so you need to buy extra parts to

make it do things. If you’re in the US, you’re probably lucky

enough to have a Radio Shack in close driving distance, and you’ll

find a mine of cool stuff there ready to play with – just talk to one

of the store assistants, explain you’re trying your first electronics

projects, and you should be able to walk away with a basketful of

goodies for $30 or so. If you’re in the UK, your best bet is to place

an order at www.maplin.co.uk for the parts you want – although I

recommend you throw in some of their wonderful Lucky Bags,

because it’s surprising the ideas that you can get when you are

given random parts to work with! Outside of the US and the UK,

you can either try to track down a good electronics store in your

country (and by “electronics” we don’t mean “sells iPods”!), or you

can go back to PCB Europe and buy one of its Arduino parts kits.

No matter which option you take, you need at least the

following if you want to complete this Arduino primer:

 A solderless breadboard. This is usually a rectangular white

block of plastic, with lots of holes in, and carries current so you

can hook things together.

 Some jumper wires. You can buy these pre-cut at different

lengths, or make them yourself – it’s all the same.

 A Type A to Type B USB connector. In normal speak that’s

standard USB on one side, and the fat USB style on the other side.

 Some LEDs. Be colourful!

 Resistors of various strengths. You won’t need anything more

than 10K Ohm resistors, but these are so cheap that you might as

well buy a selection.

 A potentiometer.

 A light-dependent resistor.

You should be able to buy all the above for £10 and still have

change afterwards, so don’t be afraid to buy a few extra parts to

have some fun later!

“The first thing with any
programming project is
usually akin to performing
a ‘hello word’ test.”

 The Arduino IDE

is very simple,

offering code

highlighting, save

and load, and not

much more – but

you can upload to

your board straight

from here.

 A USB type 2 (left) to USB type 1 (right) cable is required to

connect the Arduino to your PC.

 The Arduino board

is tiny, which means

you can cram it into

all sorts of cunning

places.

Blinkenlights

The first thing to do with any programming project – hardware or

otherwise – is usually something akin to “hello world”: make your

program send a simple message to the outside world to show that

you have everything configured correctly.

The Arduino has several built-in LEDs, such as the TX and RX

LEDs that flash when data is being sent or received. We’ll be using

a special testing LEDs to show that the board is working OK.

Getting Arduino to work on Linux can be a little

tricky, because it uses Java. What’s more, it needs

the official Sun Java rather than a clone. If you’re

using Ubuntu, make sure you have the Multiverse

repository enabled, then install the

packages sun-java5-jre, gcc-avr and

avr-libc. Many users have trouble with

braille support clashing with Arduino,

so if you don’t need braille support

you should remove the brltty

package first – if you plugged in

your Arduino board while brltty was

installed, unplug it and try again once

brltty is removed. Once all the

software is installed, run sudo

update-alternatives --config

java and select the number of the

official Sun Java. That ought to be

enough to get things working.

LXF100.arduino Sec1:51 30/10/07 10:43:12

52 Linux Format Christmas 2007

 USB in, wires out,

and a light sensor in

between – once your

Arduino is hooked up

to your breadboard and

your PC, the possibilities

are endless!

 My breadboard has numbers as shown above for the rows and

letters for the columns; I’ve referred to them throughout this

feature so that you can copy my circuits exactly.

 A full-size solderless breadboard usually is usually 60 or

so pins wide, by at least 10 high. In this picture, the rows are

connected and the columns are not.

If you’re not using Ubuntu or another Debian-based system,

the same routing is required: Sun’s Java, gcc-avr and avr-libc, but

you probably won’t have to worry about the update-alternatives

system with other distros.

We’ve included the Arduino development environment (IDE)

on your DVD this month – extract that to your desktop, then run

the arduino command. If you have problems, try running it from a

terminal so you can see any error messages. The first time you

run the IDE, you’ll be asked to choose a place where your

programs should be stored – a subdirectory of your home

directory is fine.

Now that you have your Arduino software installed, go ahead

and hook up the Arduino to your PC using a USB cable. If the

board is working OK, the PWR (power) light will be on, and your

test LED might already be flashing to show that something is on

the board already.

In the Arduino editor, go to File > New to enter some new code.

Code files in Arduinoland are known as “sketches”, and they are

very easy to get started with. We’re going to start with a simple

project to make an LED flash on and off, and I want to show you

the code and make sure it works before we look at how it works.

Here’s the sketch:

int ledPin = 13;

void setup()

{

 pinMode(ledPin, OUTPUT);

}

void loop()

{

 digitalWrite(ledPin, HIGH);

 delay(300);

 digitalWrite(ledPin, LOW);

 delay(100);

}

Now go to Tools > Microcontroller and choose either atmega8 (if

you have the ArduinoNG) or atmega168 (if you have the

Diecimila). If you’re not sure, ignore this step – Arduino will check

the CPU when it connects, and report an error if it finds the wrong

CPU. If you get such an error, just choose the other option! With

the CPU configured, go to Tools > Serial Port, and you’ll see a list of

 The Arduino

board is dominated

by the ATmega

chip, but you can

see the analog pins

at the top and the

digital pins at the

bottom.

LXF100.arduino Sec1:52 30/10/07 10:43:20

Christmas 2007 Linux Format 53

Open Source electronics

“Should you plug your
LED in the wrong way
around, nothing will
happen; just reverse it.”

 A potentiometer reports higher analog values as you turn its

knob, so make sure you use analogRead()!

possible USB devices. On Linux, chances are it’s /dev/ttyUSB0,

so select that.

OK, that’s all the configuration done – it’s time to upload your

sketch to the board! On the IDE menu bar, you’ll see an icon with a

right-facing arrow on – that’s the Upload button. If you have a

Diecimila, you can click that now and your program will be

uploaded. Otherwise, you need to press the little reset button on

the Arduino board first so that the Arduino is ready to accept a

new sketch, then press the upload button. The TX and RX lights

should flicker for a second or so, followed by about five seconds of

nothingness as your Arduino waits to see if any further

instructions are going to arrive, and finally your little test LED

should start flashing. Success!

You can take this little project one step further by taking an

LED from your kit bag, and plugging it into digital pin 13. If you

haven’t used an LED before, you should look closely at it before

plugging it in: note that it has two wires coming out, that one wire

is longer than the other, and that one side of the plastic-coloured

rim is flat. The longer wire and the flat side are there to

indicate polarity: the side with the shorter wire

and the flat rim is negative. When plugging your

LED into your Arduino board, make sure the

positive wire goes into pin 13, and the negative

wire goes into GND (Ground), and all

being well you should seeing it flash in

time with the test LED. If

you get it the wrong way

around, nothing will

happen, but don’t leave

the LED plugged in like

that too long!

How the code
works
Now that your Arduino board works

properly, I want to explain how the code

works so you can try modifying it yourself:

 int ledPin = 13 defines a variable, ledPin, that

holds an integer (a whole number, ie not numbers like

3.1) and is giving the starting value of 13.

 setup() is a default function for the Arduino. It gets called

when your program starts so you can set up some basic

configuration.

 pinMode(ledPin, OUTPUT) tells the Arduino that you want to

send data to pin number 13 rather than read data.

 loop() is another default function for the Arduino, and is called

every time the CPU is looking for some work to do.

 digitalWrite(ledPin, HIGH) means “send the value HIGH to pin

13” – HIGH is equivalent to a binary 1 versus a binary 0, or an “on”

compared to an “off”. In this case, it turns the LED on.

 delay(300) makes the CPU pause for 300 milliseconds, or

about a third of a second.

 digitalWrite(ledPin, LOW) turns the LED off.

 delay(100) makes the CPU wait a tenth of a second

And that’s it! The loop() function gets called as fast as the CPU

can go, but having those delay() calls in there

forces the CPU to pause for breath

frequently – otherwise the LED

would flash so fast it would just

appear to be on!

Remember that most

LEDs have a little

lens at the top

that focuses

their light –

 Connect the LED

digital pin 13/GND,

but make sure you

look at the wire

length on the LED

to see which side is

positive!

 If you have

everything working

correctly, your light

blinking sketch

will result in the

power light being

on (green), the

test LED being

on (yellow) and

your LED (red in

our example) also

being on.

LXF100.arduino Sec1:53 30/10/07 10:43:51

54 Linux Format Christmas 2007

Open source electronics

you’ll probably find your LED appears brightest when you look

straight down at it.

Using the breadboard
The solderless breadboard you have has strips of metal hidden

away under the holes, connecting rows of pins together as a

circuit. The columns aren’t connected, which means they don’t

carry a connection horizontally – only vertically. If you have a full-

size breadboard like ours, you’ll have a gap between rows; the

rows on either side of these gaps aren’t connected either. To give

you an example of how this works, we can modify the simple LED

system we have now by introducing the breadboard and two

wires. My board has columns numbered 1 to 60 and rows lettered

A to J, as is shown in the photos of it on the previous page, and I’ll

be using these

numbers to explain

where to put your

wiring. Even if yours

doesn’t have similar

numbering, these

numbers will still be

helpful for you because

they tell you what row and column I’m using, and that’s all that

really matters.

So, to move the blinkenlights “project” over to the breadboard,

connect a wire from GND to J33, and another wire from Digital 13

to J32. Now, that has hooked up current to I33 and I32, H33 and

H32, G33 and G32, and F33 and F32. My breadboard jump is

between row F and row E, which means E33 and E32 aren’t part of

the circuit. Now all you have to do is put your LED in the right

place to finish the circuit: where do you think it should go?

Unless you’re very fearful of electric circuits, you can probably

just have a dabble and try things until the LED lights up – you

learn a lot by dabbling, and it’s more fun, too! In this example,

plugging your LED into F33 (negative; short wire) and F32

(position; long wire) would make it light up, but so would plugging

into column G, H or I.

Now, let’s try something else: over on the other side of your

Arduino board are Analog In pins, as well as a few marked Power.

These carry a lot more current – note than one is marked 5V and

Hardware in LXF

We very rarely cover hardware like the Arduino in Linux Format – in fact, this is a bit of a

first for us! So, please write in and let us know what you think: do you want to see us

write some follow ups to this primer, using more parts, more complex sketches, and

perhaps even some complete projects? Or would you rather we stayed away from

hardware altogether? Let us know! linuxformat@futurenet.co.uk

 Resistors are so

cheap you usually

buy at least five at

a time – make sure

and look closely

at the stripes to

determine how

much resistance

they offer. You can buy a bag of pre-cut wires from any good electrical

store. If you want to look really smart, you can even use colours

for certain types of connections!

“Refer to your resistor
‘cheat sheet’ so that you
can decipher what their
coloured stripes mean.”

one is marked 9V? That’s where we can get more power from, but

you need to be careful – if you put too much through an LED, you

can burn it out. That’s not a big problem if you bought a mountain

of LEDs, but if you only have three or four you need to make them

last! However, it’s safe to plug it in for a second or two just to make

sure it works, so please do that now: unplug your Arduino so it has

no power, then connect 5V to J33 and the Gnd next to 5V to J32.

Now plug it in for a second: your LED should light up much, more

brightly (and may even start to get warm!). Once you can see that

it works, unplug the USB cable again so the light goes back out.

Now, let’s up the complexity a little: I want to introduce you to

resistors. These little things produce a voltage drop of different

levels, depending on the variety of resistor you have. The exact

resistance is shown in the little coloured stripes on the resistors,

but these are absolutely meaningless for mere mortals – don’t be

afraid to keep around a resistor cheat sheet showing what the

different stripes mean. For now, connect 5V to J38 so that the LED

no longer has power going to it. To complete the circuit, you need

to connect a resistor from I38 to J33 , and now you should see the

LED light – just a bit dimmer. If the resistor colour codes are

meaningless to you, try using different resistors here and

arranging them by strength based on the LED brightness!

Reading input
In your kit bag you should have a light sensor, which reports

different values depending on the amount of light it receives. This

takes a few more wires, an extra function call, as well as a

conditional statement, but it’s really not so hard – and it’s worth

the effort because you can start writing code to make the Arduino

aware of its environment! I have two special lanes on my

breadboard designed to make it easy to conduct power, but I won’t

be using that here because smaller breadboards don’t always

come with something similar.

First, plug your light sensor into your breadboard. I’ve put mine

on F34 and F37. Plug a strong resistor into G34, and connect it to

I29, then connect a wire from J29 to 5 – this gives your light

sensor power. You also need to connect a wire from G37 to the

Gnd pin next to 5V, so that the circuit is complete. To read a value

from the light sensor, connect another wire from H34 to Analog 0,

and that’s your system ready to be programmed!

Reading from an analog input in an Arduino sketch is very easy:

you need to store which pin you’re reading from (0), as well as

store the value from the light sensor. This is all done using the

analogRead() function, which returns a value you can store and

work with. In a sketch it looks like this:

int ledPin = 13;

int lgtPin = 0;

int lgtVal = 0;

void setup()

LXF100.arduino Sec1:54 30/10/07 10:44:22

Christmas 2007 Linux Format 55

Open Source electronics

{

 pinMode(ledPin, OUTPUT);

}

void loop()

{

 lgtVal = analogRead(lgtPin);

 digitalWrite(ledPin, HIGH);

 delay(lgtVal);

 digitalWrite(ledPin, LOW);

 delay(lgtVal);

}

What do you think that sketch will do? If you’re not sure, try

assembling it, uploading the sketch to your board, and covering/

revealing the light sensor!

More to try...
If you managed to pick up a potentiometer, these are particularly

easy to drop in once you have your light sensor working: your

cable to Analog 0 needs to connect to the middle pin of the

potentiometer; your cable to Ground needs to connect to the left

pin; and your cable to the power (via a resistor) should connect to

the right pin. Make sure your potentiometer is very firmly plugged

into the breadboard – they usually have thicker connectors, so you

might have to give it a good push!

Of course, this has only really been a very light overview of

what Arduino can do, and that’s because the real magic comes in

the software you build. We’ve shown you here how to put together

circuits to read and write data, and the next question is: what are

you going to do with it? LXF

 Before you try

uploading to a

board, make sure

you select the

correct serial port

for your Arduino

– it’s probably

/dev/ttyUSB0 or

something similar.

“Reading from an analog
input in an Arduino sketch
is very easy – use the
analogueRead() function.”

Get online...
... and get more from Linux Format!

www.linuxformat.co.uk

 First steps with printing, making videos and web security

 58 cool tips and tricks to improve your Linux box

 Building your own custom Linux distribution

 Creating a locked-down Linux desktop for kids

 Programming with PHP, C#, Perl and Subversion

 Producing cool music and sound effects with Jack

...and all editable so you can add your own guides and tips!

Visit our ever-expanding wiki for in-depth info
covering masses of Linux subjects, including:

LXF100.arduino Sec1:55 30/10/07 10:44:30

